D-A238 047 L[IC
AL AT

RL-TR-Z.-76, Vor'il (of four)

Final Technical Report e
June 1991 8

Ry R

EXPERT SYSTEMS ON MULTIPROCESSOR
ARCHITECTURES Technical Reports

Stanford University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. 5291

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and
sh 'iid not be interpreted as necessarily representing the official policies, either
exp. .ssed or implied, of the Defense Advanced Research Projects Agency or the U.S.
Govarnment.

Rome Laboratory
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

.
-
O
i} 'v.

) I

91-04336

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and 15 releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations,

RL-TR-91-76, Volume I1 (of four) has been reviewed and is approved
for publication.

APPROVED: 0?0 W E—;‘)(Ml

NORTHRUP FOWLER 11X
Project Engineer

Y NP
APPROVED: g -~ C

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

~

FOR THE COMMANDER: W Wﬂ’y

RONALD RAPOSO
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,_p.lease
notify RL(COE) Griffiss AFB, NY 13441-5700. This will assist us in maintaining 2
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Best
Available

Copy

EXPERT SYSTEMS ON MULTIPROCESSOR ARCHITECIURES,

Technical Reports

Edward A. Feigenbaum
Robert Engelmore
H. Penny Nii

James P.

Contractor:
Contract Number:

Effective Date of Contract:
Contract Expiration Date:
Concurrent Expert Systems
Architecture

Short Title of Work:

Program Code Number:
Period of Work Covered:

Principal Investigator:
Phone:

RL Project Engineer:
Phone:

Rice

Stanford University
F30602~85-C-0012

14 March 1985
31 March 1990

0E20
Mar 85 - Mar 90

Edward A. Felgenbaum
(415) 723-4878

Northrup Fowler III
(315) 330-7794

N BCRUDRAGULEN
;

Dist

. :?7 :
|

Acessalun Yor
. e azd i

pvy - ..
G a
DM 2w g [i
L

-
t

.,
(RS ¢} YU, -

- e

el T ey 3
SRy Lond

. N
Fra tey

- ey

Lomllatinite Codes

£

pAvail andfer
Special

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of

Defense and was monitored by Northrup Fowler III,

RL (COE), Griffiss AFE NY 13441-5700 under Contract

F30602-85-C-0012.

REPORT DOCUMENTATION PAGE | v ko o704 0188

Pubic: reporting busden for this cotedtion of Pforrmation « estimeted to @ 'erege 1 Four per respores, NA.ing the o= FOr reveierg NtiucIx:s. Saschng Sstng CXu o.22es
Quhenng & mairtairig the dats neatiad, snd carmpisting ard rvewnng the coalectxan of rfommanon. Se vl comments rege iy T DUECEr 4TS OF Ny OUNer 3SCeCt f *T1S
colection of Infarmation, inckadng SUOOMINONS far reducing this burden, (o Weshirgion Hesoganws Servicas, Oreaars for sfommany Cowatones ancRepons 275 _efersor
Davis Highway, Suls 1204, Alngion, VA 222024352, wna to e Offics of Maragemens snd Bucier, Pepemwork Reduction Fromct (7040196 Weshngior, 5T 20583

1. AGENCY USE ONLY (Leavs Blank) 2. REPORT DATE !3. REPORT TYPE AND DATES COVERED

June 1%91 | Final Mar S> - Qct 90
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS .
EXPERT SYSTEMS ON MULTIPROCESSOR ARCHITECTURES, C - F30602-85-C-0012
Technical Reports PE - 62301%

PR - E291

6. AUTHOR(S) TA - 00
Edward A. Feigenbaum, Robert Engelmore, Wi - Ol
H. Penny Nii and ~ ses P. Rice
7. PERFORMING ORGZ* .1ION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION |
Knowledge Systems Laboratory REPORT NUMBER
Stanford University N/A
701 Welch Rd, Bldg C
Palo Alto CA 94304
9. SPONSORING/MONITORING ASENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Defense Advanced Research Rome Laboratory (COE) AGENCY REPORT NUMBER
Projects Agency Griffiss AFB NY 13441-5700 RL-TR-91-76, II (of
1400 Wilson Blvd four)
Arlington VA 22209-2308

11, SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Northrup Fowler IILI/COE/(315) 330-7794

12a. DISTRIBUTION/AVALABLLITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Meimum 230 woros)
This final report documents the results of a five-year investigation of methods for

achieving higher performance for knowledge-based systems through the design of
innovative software and hardware systems architectures. Volume I summarizes the work
performed and lessons learned, and serves as an annotated index to the set of over

50 project technical reports. Volumes II through IV contain the project technical

reports.

NOTE: Rome Laboratory/RL (formerly Rome Air Development Center/RADC)

14. SUBJECT TERMS 18 NUMBER OF PAGES
Multiprocessor Architectures, Artificial Intelligence, 478
Blackboard Systems 18 PRICE CODE

17. SECURITY CLASSFICATION 18, SECURITY CLASSFICATION |19, SECURITY CLASSIFICATION |20, LIMITATION OF ABSTRACT

OF REPOAT OF THIS PAGE OF ABSTRACT 20. UM Tio BsTRAC
UNCLASSIFIED UMCLASSIFIED UNCLASSIFIED u.
NSN 754501 -280-350 ~ Slwxwaram 9 e 289

Sraacrbed by A143: 512 123 '8
.- 21:-]

[Aiello 86]
[Aiello 88]

[Aiello 89]
[Bandini 89]
{Brown 861

{Byrd 87a]
[Byrd 87b]
[Byrd 87c¢]

{Byrd 88a]

[Byrd &8b]
[Byrd 89]

[Davies 86]
[Delagi 86a]
[Delagi 86b]
[Delagi 87]
[Delagi 88a]
[Delagi 88b]

[Delaney 86]

Table of Contents foir Volume 2

User-Directed Control of Parallelism. The CAGE System

Cage: The Performarnce of a Concurreni, Blackboard
Environment.

The Cage System User's Manual.
An Application in Poligon.

An Experiment in Knowledge-Based Signal
Understanding Using Parallel Architectures.

A Point-to-Point Multicast Cominunication:s Protocol.
Considerations for Multiprocessor Topologies.

A Dynamic, Cut-Through Communications Protocol with
Multicast.

A Performance Comparison of Shared Variables vs.
Message Passing

Muiticast Communication in Multiprocessor Systems.

Support for Fine-Grained Message Passing in Shared
Memory Multiprocessors.

CAREL: A Visible Distributed Lisp

LAMINA: CARE Applications Interface.

An Tnstrumented Architectural Simulation System.
Instrumented Architectural Simulation.

CARE User's Manual.

ELINT in LAMINA: Application of a Concurrent Obiect
Language.

Multi-System Report Integration Using Blackboards.

21

2-15
2-26
2-58

273
2-116
2-148

2-155

2-181
2-19%

2-205
2-226
2243
2-272
2234
2-301

Knowledge Systems 1.aboratory April 1986

Report No. XSL 86-31

User-Directed Control of Parallelism;
The CAGE SYstem

by
Nelleke Aiello

RNOWLEDGE SYSTEMS LABORATORY
Computer Science Department
Stanford University
Stanford, California 94303

To Appear in the Proceedings of April 1986
DAPPA conference.

Abstract

CAGE provides a framework for building and executing application programs as concurrent
blackboard systems. The user controis which constructs of the blackboard system are
executed in parallel.

2-2

1. Introduction

CAGE!, Concurrent AGE?, provides a framework for building and executing application
nrograms as a concurrent blackboard system. With CAGE, the user can contrel whick parts of
the blackboard system are executed in parallel. A blackboard application can be implemented
and debugged serially on CAGE. Once the serial version i3 debugged, concurrency can be
introduced to different parts of the system, allowing the user to experiment with various
configurations. We believe this incremental approach will facilitate the ccnstruction of
concurrent problem solving systems and will teach us much about programming in a parallel
environment. This paper describes the design of the CAGE system and gives detailed
instructions for implementing an application, using the CAGE language and compiler [Rice
86]. We have included advice, warnings, and caveats based on our experience using CAGE.

The target parallel system architecture for the CAGE system is currently the same as that of
QLAMBDA, a queue-based multi-processing Lisp ([Gabriel 84Jand McCarthy) on which the
parallel simulation is based. We are assuming a shared memory and a large number of
processors. The user can specify his CAGE application in an extension of the L1090 language,
called the CAGE language, and use the CAGE compiler to generate CAGE code. CAGE runs
on LOQS, a functioral simufator for QLAMBDA. CAGE is implemented 1n ZETALISP for
Symbolics 3600 nachines and T Explorers.

2. Overview of CAGE Design

CAGE is a blackboard framework system. In addition to the basic AGE [Nii 79]
functionality, CAGE allows user-directed control over the concurrent execution of many of its
contructs. The basic components of a system built using CAGE are:

1. A global data base (the blackboard) in which emerging solutions a:e posted. The
elements on the blackboard are organized into levels =nd represenied as a set of
attribute-value pairs (a frame).

2. Globally accesstble lists on which control informatton 15 posted (¢ 2. hists of events,
expectations, ete.).

3. An indefinite number of knowledge sources, ecach consisting of an indefinite
number of procuction rules.

4. Various kinds of control information that determine (a) which kiackboard element
is to ke th. focus of attention and (b) which knowledge source is {0 be used al any
given point ‘n the problem solving process.

5. Declarations ‘hat specify what components (knowledge sources. rulzs, condition and
action parts of rules) are to be executed in parallel, and when to force
syncaronization. During the execution of the user's apphicanion CAGE will run
these specified components in paratlel.

Using the concurrency control specifications, the user can al-er rhe simpie, serial control toop
of CAGE by introduciiy, concurrent actions. CAGE allows parallelism ranging from
concurrently executing knowledge sources all the way dow-. to concurrent actions on the
right- or left-hand-sides of the rules. The senal execution and parallei executions possible in
CAGE are summarized below.

in KS Control
serial:pick one event and evecute assoctated KSs

lThas research 15 ried by LARPA/RADC under wontract number FI0202-85-C-0012, by NASA under contract
number NCC 2-220, . by Buerrs "Lmipueer Services under contradl number W-266875.

2 .
“CAGE 15 vaszd on the AGE Systent and we hove assumed here that the rzader 1s famibiar with the AGE system,

2-3

parallek)
1. as each event is generated execute associated

KSs in paratlel’

2. wait until several events are generated then
select a subset and execute relevant KSs for
all subset events in paraliel

in KS
serial:1. evaluate bindings
2. evaluate LHS then execute RHS of one rule
whose LHS matches (in writien order)
3. evaluate all LHS then execute all RHS
whose LHSs match

- parallel:
1. evaluate bindings*
2. evaluate all LHSs in parallel
a. then svnchronize (i.e. wait for all
LHS evaluations to complete)
and choose one RHS(pick one in order)
b. then synchronize and execute the
RHSs serially (in written order)
c. execute RHS as LHS matches®

in Rule)
serial:evaluate each clause then execute each action

parailel;
evaluate clauses in parallel then execute actions
in paraliel*
(first nil clause --> no match; first ali non-NIL
clauses --> match)

in clause _
serial: Lisp code

parallel: Qlambda code

For more information abcut the concurrent options available in the CAGE System and how
to specify them refer to Section 1V of this paper.

3. Building applications in CAGE

In each of the following sections we will outline the application data that must be supplied
by the user and how that information should be structured for use by the CAGE System. The
CAGE System provides a CAGE language with which the user can write his apphcation. The
type of user-supplied information i1s stmilar to that required for applications constructed in the
original AGE system. However, the structure of the user information is somewhat different
from that of an AGE application,

3Th: starred cpuons indicate the greatest use of congurrency

2-4

3.1, Blackboard Data Structure .

There are two major components in the CAGE blackboard structure, the hypothesis classes
(frequently called levels in hierarchical blackboard structures) and the hypothesis nodes. The
.user must specify the classes that make up his application's blackboard structure, For each
class, the user must define.the fields to be associated with the nodes created in that class,
Nodes are created in those classes, either a priori by the user or dynamically while executing
the user's rules. The following example shows the definition of several classes and their fields

in the CAGE language.

Class Definitions for h.del "example”

Class name-of-levela :
attributel
attribute?
attributed

()

Class name-of-laevelb :
attribute4d
attributeb:

' This'will compile into two macro calls, DEFHYPOTHESIS-STRUCTURE and DEFLEVEL,
which the CAGE System will in turn compile into the appropriate hypothesis structure.

(defhypothesis-structure
user-hypothesis-structure
(application-system-root)
name-of-levela
name-of-levelb
name-of-levelc

:)

(deflevel name-of-levela
((attributel ni)
attribute2 nil
attributed n1;

Each of the levels(or classes) will be defined as an object with the attributes as instance
variables and with the nodes as instances of those objects as they are created. (The user can
define methods for the level objects which are generally used for printing information
contained in the nodes on those levels.) '

Definitions: - A
user-hypothesis-structure: A name the user gives the application's blackboard
. _structure,

application-system-root: A handle on the above hypothesis structure for user
access, generally a node where the input data, or a massaged version of the input
data will reside, or the top level of a hierarchical hypothesis structure.

name-of-level: Each level or class must have a user supplied name,

node; An instance of a level, created either before or during the execution of the
application, inheriting all the attributes of that level, but no values.

attribute: For each level the user must specify the names of the slots, which will
become a template for the instance nodes, which in turn will contain the values used
by the KSs. These values are initially NIL.

link: The user may also define links for connecting nodes, These links are defined

in the knowledge sources which use them and consist of a link name and an
optional, opposite link. The value of a link on a node is the name of another node.

value: The value of an attribute depends on what was stored there by the rules
and its structure depends on how it was stored. Values can be modified only by the
user's initialization function and by the application rules. The structure of the
values is arbitrary. How values are added or changed is explained in the knowledge
source section.

3.2. Control Structure)
All CAGE control information is referenced through the Control-Structure object. The
major components of the Control-Structure are:

User-Initialization: This is a user-defined function, handling any initialization
needed for the user's program, eg. setting-up the appropriate blackboard structure
(on top of the predefined hypothesis framework) from the input data.

Termination-Condition: Another user-defined function, which determines when the
application should be terminated. The Termination-Condition can access the step-
lists for events or expectations, perhaps checking for a significant event; or the
blackboard, checking a particular node or nodes. It should return a non-nit value
when the application is (0 be terminated.

User-Post-Processor: When the termination condition is true, a user supplied post
processing function is invoked. This function can be used to print out the
application’s results in a readable form. or to nandie any other post processing
details.

Event-Info: This is a pointer 1o the Event-Information object which contains
both the user-specified information on how events shuuld be scheduled. and run-
time data including the event list and the current focus event.

Expeci- info: Similar to the Event-Info pointer, this object keeps track of the
expectations generated by the applicaiion and inform:ztion specifying how those
expectation should be scheduled.

Control-Rules: A list of of control rules defined by the user to determine when (o
execute which control step (event or expeciation). The control rules are defined
using the DCFCONTROL-RULL macro. Each control rule consists of a condition,
an arbitrary LISP expressicn and a steptype, either event or expecl. The foliowing
example of a control rule says that if there are any evenis pending on the event list
(steplist of event-info is not nuil), then do an event next.

Example:

Contrgl Rule @ Cryle-1
Condition Part:
If : event-info@steplist
Action part : event

LHS-Esaluator: The defzuit function for evalvating the <onditions of a rute 1f the
knowledge source conlaming that rule has no left hand side esaluator over-riging
this default. For most apeiications the CAGE provided Tusaction QAND will suffice.
It 1s a serial or concurreni boeiean AND depending on the parallel options selected
by the user.

i

3.2.1. Event-Information
A blackboard system can be exzcuted 1n several ways, the simplest heing event-driven. This
means that each ume a rule aciiosn 1y executed the sysiem rec ods that change to the blackboard

t
[}
o

as an event Fach event is added o a list called the event list. The scheduler selecis an event
from the event list to become the next focus event. The typ: of focus event is matched
against the preconditions of the knowledge sources, and ali the matching knowledge sources are
activated. The rules of the activated knowledge sources are evaluated, thoss rules with satisfied
conditions are executed and the cycle repeats until the termination is true.

To run a blackboard model with an event-driven control structure. certain control
information must be supplied by the user.

selection-wethod: a function that determines which eveat to select from the event
fist. The user can write his own best-first selection method or use one of the
CAGE provided functions, FIFQ, LIFO, cr AGENDA. If the AGENDA seiection
method is chosen, the user muyst also specify the agenda and an order.

agenda: An ordered iist of event types scoplied by the user. (See knowiedge source
specification for definition of event ype)

order: LIFO or ¥IFO order :n which (o check the agenda. There may bes several
different events of the same type on the exent list.

coliection rules: In some applications many evenis of the same type and the same
node are generated and added to the event list. if the user specifies that type of
event as a coliection rule, then only one event is pursued and the others are
collected and deleted from the event fist

3.2.2. Expect-Isformation

In an expectation-driven sysiem, z rule may specify an expected result or change on the
blackboard as ome of the actions of that rule {called an expectation rule). When an
expectation rule is excculed, the expectation part of the ruie :s added to the expectetion list.
Later, when the controi rules specify that an "expect” step should be executed. 2 focus is
selected {rom the expectation list. If a change has occurred on the blackboard that satisfies the
expect portion, actions 2sscciated with the expectation rule are zxecuted.

Much of the information required !0 execute an zxpeciation-Jriven system is similar (0 that
of an eveni-driven system. The user must supply 2 selecticn-methed, possibly including an
agenda and order. and colieciion rules. Some addittorai information is required o execute
expectation.

matcher: 2 function which defines how (0 match expectations (0 the blackbeard.
CAGE provides on default, PASSIVEMATCH. which simply evaluates the expectation
portion of the expectation rufe 1o see if its value 15 non-nik.

3.3. Knowledge Sources
CAGE knowledge sources are : partitioniag of the apniication knowledge into sets of rules
Each knowledge sour.ce consists of some deciarative mfornwetion and a set of rules

3.3.1. Knowledge Source Declarations

The definition of a knowiedge scurce consisis of more than groups of rules. In order (¢
properly interprets ihose rules, CAGE needs o know cerimin knowledge source control
information, =g,

1. Under what crrcumstances should this knowledge source be imoked?

-

2. How should the ruie cuondilions be evaluated,

ferd

what levels of the biackboard siructure will te changed?

Which one or all of the rules whoss conditions afe (rue should be executed?

o

Are there any local varnakles or links 1o be defined for ihis K§?

The following features are avz..ole for the user to tailor a knowledge source to his own
specifications:

.
.

Preconditions: A list of tokens, representing the event types used in rules. If the
focus event has an event type that matches one of the knowledge source's
precenditions, then that knowledge source is activated.

Levels: A list of pairs of blackboard levels or classes, The user must specify
between which levels of his hypothesis structure a knowledge source makes
inferences,

Links: [If a knowledge source adds links between nodes on the blackboard, they
must be defined here, The definition consists of a list of pairs of link names, a
link and its inverse.

Hit Strategy: There are two main hit strategies available in CAGE, SINGLE and
MULTIPLE, When a knowledge source with a single hit strategy is interpreted the
rules of that KS are evaluated, in order, until one rule's condition evaluated to true.
Then that rules actions are executed and no other rules are even considered. With a
multiple hit strategy, the conditions of all rules of a knowledge source are evaluated
and then all the actious of rules which successfully evaluated executed. In
conjunction with either single or multiple hit strategies, the user can also specify
ONCEONLY. This will cause a rule to be marked when its conditions are
successfully evaluated. Its actions will be executed and it will never be evaluated
again during that run of the application,

Definitions: A list of local definitions, available to all the rules of a knowledge
source, The definitions are an efficiency feature to avoid the repeated calculation of
the same value by all the rules. The structure is similar to that of LET, a list of
pairs, a variable name and an expressions to be evaluated and assigned to the the
variable. If the value is NIL it can be omitted.

Rule Order: A list of rule names, representing the rules of the knowledge source.
This is the order in which the rules will be evaluated serially. Because the rules are
actually defined as methods of the knowledge source to which they belong, each
name should begin with a colon (:).

LLHS Evaluator: The user can optionally specify a left hand side rule evaluation
function for each knowledge source. There is also a default LHS evaluator specified
for the entire application in. the Control data. The evaluator specified here will
override the default evaluator for this specific knowledge source. The LHS evaluator
is a function which determines how the rule conditions are evaluated. CAGE
provides several built-in functions which the user can select, including AND, for a
simple boolean AND of the conditions and QAND for a concurrent boolean AND,

The following is an example of the definition of a knowledge source from the CRYPTO
system written in the CAGE language. The name of this knowledge source is "combine-
weights”, it has two preconditions, makes inferences from the Cryptoletter level of the
hypothesis structure to the alphabet-letter level, defines a pair of bi-direciional links, and uses
the single-hit rule selection strategy. The combine-weights knowledge source also makes two
definitions, possible-values gets the value NIL and lhs-evaluator the value QAND.

4Thc colons in the CAGE language are separators when sepafaled by spaces from other words in the language.
Colons indicate keywords when they directly nrecede a word.,

2-8

Knowledge Source : combine-weights '
Preconditions : Confirmation, Contradiction
Classes : Cryptoletier : alphabet-letter
Links : Possible-Value-of : possible-Letters

Rule Selection : Single

Definitions :
possible-valves = nil
Ths-evaluator = gand

This compiles to the following CAGE macros.

{defknowledge-source COMBINE-WEIGHTS
:preconditions (confirmation contradiction)
:levels ((cryptoletter alphabet-letter))
:1inks((possible-value-of possible-letters))
:hit-strategy (single)

:bindings ((possible-values))
:rule-order (:.2tters)
:Ths-evaluatcr qand)

3.3.2. Rules

CAGE rules consist of three major parts; definitions, conditions, and actions.

example from CRYPTO in CAGE.

Rule : 1letters {3}

Definitions :
possible-values =
possible-values(focus-node®
possible~letters)

Condition Part :
If : gand(focus-node-is-cryptoletter,
possible-values)

Action Part :

Changes :
Change Type : Update
Updated Node : focus=~node
Event Type : possible-assignment

Updated Slots :
possible-letters «« possible-values

iCombine the weights of identical possible
ivalues.

Here is an

CAGE also provides a macro for defining rules called DEFRULE, to which the above will

compile,.

(defrule (combine-weights :letters)

((possible-values

(possible-values
($value focu;;?gde :possible-letters
sall

((is-cryptoletter focus-node)

possible-values)

((propose :EVENT-TYPE 'possible-assignment
:CHANGE-TYPE 'supersede
:HYPOTHESIS-ELEMENT focus-node
:LINK-NODE nil
:ATTRIBUTES-AND-VALUES

'"((possible-letters
,possible-values))
:SUPPORT 'combine-weights)

))

After speéifying the knowledge source to which a rule should be added and the name of the
rule, preceded by a colon, the user must specify the three major parts of the rule. '

Definitions: The definition part of a rule is similar to a LET in structure. The
local variables set here are available only to this rule, both in the condition and
action parts, as well as other definitions of this rule. This is an optional component
of a rule, and can be NIL.

Conditions: The second part of a rule contains the conditions. These can be one
or more arbitrary LISP expressions which will be evaluated according to the left
hand side evaluator as specified in the local knowledge source or at the control level.
The conditions can reference both local variable definitions or variables bound at
‘the knowledge source level. The CAGE system provides several access functions for
retrieving values from the hypothesis structure, which cun be used in the conditions
of rules. It is important when writing the conditions of rules for a CAGE
application to keep in mind the feasibility of running those clauses concurrently, i.e.
keeping them independent of each other.

Actions: The action clauses make up the final part of a CAGE rule. These
clauses have a very specific structure as evidenced by the preceding examples. The
actions specify what changes are to be made to the hypothesis structure by a rule and
how those changes should be made. The user must specify what node and attributes
on the blackboard are to be changed, what the new links or values are, and how
those changes are to be made (possibly deleting some old values). The user must
also specify an event type, a name representing the type of change this action makes
to the blackboard. If and when the event created by this action is selected as a
focus event, this token will be matched against the preconditions of the knowledge
sources to determine which KS to invoke next.

3.4. Initialization

There are two types of initialization which can occur at the beginning of a CAGE run. First
CAGE must create the instances of all the application defined flavors which will constitute the
executable form of the user's system. In addition, the user can do any other initialization he
feels appropriate by defining his own initialization function, the name of which should be
stored in the application's control structure. Since the major components of the application
are defined as flavors, initiatization can be done by defining :initialize or :after :init methods.

3.5. Input Data .
The user must define two functions to handle his input data.

2-10

1. INPUT-PROCEDURE(Record, Time) : Given an input record, retrieved
automatically at the correct time by CAGE, do what ever should be done with that

input,eg. add it to the blackboard.

2. TIME-OF-INPUT-RECORD(Record) : Given an input record, return the time
stamp.

At the beginning of each run the user will be asked to specify an input data file by typing in
the file name or selecting a file from a menu of pre-specified input data file names. The data
file consists of records that can be read by the above two functions. A time stamp is
mandatory on each input record.

4. Specifying Concurrency

CAGE supports the concurrent evaluation of pieces of knowledge. Once an application has
been debugged in serial mode, the user can specify one or several knowledge source components
to be executed in parallel. For example, the user might specify that the rules of the knowledge
source be evaluated concurrently, or perhaps just the actions of the rules or a combination of
the available options. With a minimum amount of recompilation, the user can change his
parallel specifications and experiment with many different configurations.

In general more speed-up should occur as more components are run in paratfel. But for
some applications the overhead of setting up the new processes and inter-process
communication costs will be greater than the speed-up gained by executing particular
components concurrently. For example, if most or all of the knowledge sources of an
application contain only one rule, then it would not be efficient to evaluate rules in parallel
since for any one KS invocation there would only be one item to evaluate.

4.1. Concurrent Components

The use of knowledge sources to partition the knowledge in blackboard systems and, in
particular, the structure of the knowledge sources in CAGE provide several obvious places for
concurrency. The knowledge sources group the domain knowledge into independent modules,
which theoretically, could be invoked independently and concurrently. Within cach knowledge
source the rules provide another source of parallelism, and within each rule, the clauses of the
condition and action parts provide yet another. Of course not all clauses, rules or even
knowledge sources are actually implemented totally independently of each other and some
serialization may be necessary to correctly solve the application problem.

The following are the options for parallelism available in CAGE, grouped according to their
allowed use in combination.

Clause level: can be used in combination with each other or any other parallel
option.

actions: Execute the RHS action clauses of a rule in parallel. Note:
When running RHS actions concurrently a non-deterministic system may
result if both destructive (Supersede in CAGE) and constructive (Modify)
actions occur to the same object in parallel. (Same object and attribute) A
QLOOP macro is used to initiate the parallelism for loop actions,
requiring recompilation of the rules containing loop actions.

lhs: Evaluate the LHS condition clauses of a rule in parallel. Note: Use
the rule bindings to set any local variables tested here, isuring that the
Ihs clauses will be independent. A QAND macro is provided as the LHS-
evaluator to nitiate the concurrency for the conditions, requiring
recompilation when this option is used.

rule-bindings: Evaluate the definitions of a rule in parallel. Again, these
definitions should be independent of each other if their concurrent
evaluation is to result in an actual speed-up.

2-11

Rule level: bindings can be used in combination with any of the other options, but
only one of the rule options, single, multiple, sync or nosync can be used at a time.

bindings: Concurrently evaluate the definitions at the begirning of a
knowledge source.

rules-single: Evaluate all of the conditions of the rules of a knowledge
source concurrently, but only execute the actions of one successfully
evaluated rule,

rules-multiple: Evaluate all of the conditions of the rules of a knowledge
source concurrently, then serially execute the actions of all the successfully
evaluated rules.

rules-sync: Evaluate all of the conditions of the rules of a knowledge
source concurrently, then concurrently execute the actions of all applicable
rules.

rules-nosync: Begin evaluating the conditions of the rules of a knowledge
source in parallel and execute the actions of each rules as soon as the
conditions are known to be true. With this option there is no
synchronization between the left and right hand sides of rules.

Knowledge source level: Only one of the knowledge source options can be set at
any one time,

kss: Invoke ail the applicable knowledge sources concurrently at step
selection, synchronizing by waiting for all knowledge sources to complete
execution and add events to the event list before concurrently invoking a
new set of kss.

kss-nosync: Invoke all applicable knowledge sources as soon as a new
event is created. This option provides the least control of all the options
available and does no synchronization. Many applications will have to be
changed slightly to execute reasonably under these conditions, particularly
removing any possible circular knowledge source invocations. To
implement the parallel execution of knowledge sources without any
synchronization, the control loop of CAGE was drastically altered from
that described at the beginning of this paper. (See CAGE Overview.)
Without any synchronization, as soon as an event is created it immediately
allows all relevant knowledge sources to be invoked. No events are added
to the eventlist and no focus event is ever selected. A timed loop was
adued to the top level control to re-invoke the user's initial knowledge
source in case the sysiem exhausts all previous events before the
teraingtion condition is satisfied.

kss-mcipisyic: Add an event to the event Nist and do mimimal
computation at the pomt of synchronization before invoking the next set
of knowledge sources. The maint computation done is the collection and
pruning of similar events, leaving fewer events to activate subsequent KSs.
The mini-syni¢ and no-syn¢ options are different from the parallel kss
option in that they don't use the serial step-selection procedire,

4.2. How to specify and change parallel components

A function, SELECT-PARALLEL-OPTIONS is provided to allow the user to quickly change
the selected parallel options. SELECT-PARALLEL-OPTIONS has no arguments. A menu of
parellel options will pop-up on the screen and the user can select new options or delete old
ones.

2-12

5. Design Details

CAGE is currently implemented in an object-oriented style, using the Flavors feature of
ZETALISP. The top level object in CAGE is called the BLACKBOARD. From the
Blackboard object there are pointers to each of the principle components of the system, as
follows

control-structure: all control information specified before compilation is stored
here, as well as pointers to run-time control structures.

hypothesis-structure: the blackboard solution space, which must be structured by
the user. :

knowledge-source-list: names of the knowledge sources containing the production
rules of the user's application.

user-functions: optional, user-defined functions invoked by the rules

information-structure: optional, user-defined, static data structures

A separate data structure, Parallel-Specifications, is used to store the parallel cptions selected
by the user.

The DEFKNOWLEDGESOURCE macros will create, at compile time, an object for each
knowledge source, and a set of associated methods. During the initialization process an
instance of each knowledge source object 1s created. Other instances may be created during
system execution if one of the concurrent knowledge source options is selected. One of the
associated methods, SETUP-AND-START, evaluates the knowledge source definitions and
initiates the rule interpretation when a knowledge source is invoked.

Each rule is created as three methods, EVALUATE-DEFINITIONS, EVALUATE-
CONDITION, and EVALUATE-ACTION, associated with the rule’s name using the :case
method-combination feature of Flavors. The keywords of the action clause listed above are
keywords in the method definitions, and therefore must be preceded by colons in the macro
definition of a rule.

CAGE utilizes a global variable, PARALLEL-SPECIFICATIONS, whose value is a list of the
current parallel options specified by the user. It is imually NIL and is updated using
SELECT-PARALLEL-OPTIONS.

During execution CAGE prints out messages indicating the state of the execution and uses
some simple graphics to help the user observe the simulation of concurrency. A set of small
windows will appear on the right side of the screen, one for each process initiated by CAGE.
Any state messages generated by the parallel process will appear in one of these associated
windows, instead of the main terminal i/0 window. There is only room to display 12 of these
small i/0 windows at the same time and still have them large enough and leave them up long
enough to be readable. If more than 12 processes are active at the same time, the windows wil!
overlap.

6. Future Directions

The next step for CAGE will be a reimplementation on CARE. The instrumentation in
CARE will provide us with the needed tools for measuring the speed-up gained from each of
the various concurrent options in the CAGE System. CAGE users will be able to implement
and debug their applications in the current CAGE-on-LOQS system with its fast simulation
time. Once an application 1s debugged it could then be run on the CAGE-CARE system for
complete and accurate measurements.

References

[Gabriel 84] Gabriel, Richard P. and McCarthy, John.
Queue-based Multi-processing Lisp.
Proceedings of the ACM Symposium on Lisp and Functional programming :25
- 44, August, 1984.

[Nii 79] Nii, H. P. and N. Aiello.
AGE: A Knowledge-based Program for Building Knowledge-based Programs.
Proc. of IJCAI 6 645 - 655, 1979.

[Rice 86] Rice, J. P.
The L100 Language and Compiler Manual.
Technical Report KSL-86-21, Heuristic Programming Project, C. S. Dept.,
Stanford University, 1986.

December 1988

Knowledge Systems Laboratory
Report No. KSL 88-80

Cage: The Performance of - ' _acurrent
Blackboard Eunvironn.ent

by
Nelleke Aiello

Knowledge Systems Laboraiory
Stanford University
701 Welch Rd. Bldg C
Palo Alto, Ca. 94304

The author gratefully acknowledges the suppei. of the following funding agencies
for this proiect; DARPA/RADC, under ¢ontract F30602-85-C-0012; NASA, under
contract number NCC 2-22(); Boeing Computer Services, under contract number

W-266875.

2-15

Abstract

This paper describes Cage, a concurrent problem solving system which attempts to
deploy parallelism within the traditional blackboard model. With Cage, the user can
specify in detail which parts of his blackboard application to execute in parallel. It
was hoped that by imbedding parallelism at different levels of the blackboard model
a multiplicative speed-up could be achieved. The Cage system, its architecture, and
its operation in a multi-processing environment are discussed. A number of experi-
ments which were conducted to evaluate the speed-up and through-put achievable
by Cage for one particular application are also presented.

1. Introduction

A common complaint about blackboard! systems is that they are 100 slow and cum-
bersome to be of practical use. -Jnc colution is to use multiple processors to exe-
cute different parts of the blackboard model simultaneously. Cage is a problem-
solving system designed to speed-up the execution of traditional blackboard sys-
tems through parallel processing. Ir this paper the Cage system, its architecture,
and its operation in a multi-processor environment are described. An application
called Elint has been mounted on Cage and the results of experiments performed to
test the speed. up and throughput achieved by Cage for this appiication are also pre-
sented.

Work on Cage was conducted as part of the Advanced Architectures Projzct at the
Knowledge Systems Laboratory of Stanford University, to study ways of exploit-
ing parallelism at all different levels of a system's hierarchical structure from the
application to the machine architecture level Cage uses parallelism at the problem
solving level, and is further constraincd te a target system architecture of shared-
memory multi-processors.2 The potential applications envisioned for this work can
be characterized as performing real-time interpretations of continuous streams of er-
rorful data, a class of applications which curr~ntly run too slowly on serial black-
board systems to be of practical use.

2. Cage System

The Cage system is an extension of the serial Age system [Nii 79]. The two sys-
tems are identcal except that Cage allows parallel execution of many of its applica-
tions' components. Parallel execution in Cage can occur at different levels of gran-
ularity, based on natural divisions in the blackboard model. In this section, we will
first give some hackground information about Age, and then we will describe Cage
and how the user can specify concurrency in Cage.

2.1 Age Derivition

Age is an implementation of a serial blackboard system. It is composed of a

knowledge base, in the form of knowledge sources(KSs), and a structured solution
space, a blackboard, where the KSs can post interim results and read the results of

1t is assumed that the reader is familiar with the blackboard model and :nc relevant terminology.
For more information, the reader is referred to [Nii 86) and [Engclmore 88].
2Thosc interested in distributed-memory architecturcs may want to read about Poligon. a

concurrent blackboard system designed for distributed memory multi-processor machines{Rice 88]
{Nii 88].

other KS executions. KSs contain condition-action rules that can read the black-
board and make changes on it. The blackboard is a structured set of /evels on which
objects are created and modified by the rules. These changes to the blackboard are
called events. A scheduling mechanism, or controller, programmable by the user,
invokes one KS at a time from among those triggered by the preceding events. Fig-
ure 1 shows the control and data flow of this serial control cycle.

Initial™ e

kS CErooute KD Qaminate?)
\ no

Blackboard

@ @ Event List
ks | |ks] [ks |
IKS] [KS] lKS]

Figure 1. Serial Control Cycle

Select
new
Event

Determine
Relevant
KSs

2.2 Cage Architecture

The basic components of Cage are the same as Age's with one addition--the
declarations that specify which components to execute in parallel and at which
points to synchronize. The components which can be executed in parallel ir Cage
are the KSs, the rules within the KSs, and the condition and action parts of rules.
Synchronization points can be specified (1) in the controi cycle between sets of con-
current KSs; (2) within a KS after evaluating all the rules' conditions but before
executing any actions; or (3) within a rule, between the condition and action parts.
By selecting one of the concurrency control options, the user can alter the simple,
serial execution of KSs and their components so that they aie executed in paraliel.
Next we will discuss each potential source of concurrency in detail.

Knowledge Source Concurrency

Two possible sources of concurrency exist at the KS level. A number of KS» cun
work either on different parts of the blackboard at the same time or in a pipeline
fashion. In the application area of real-time interpretation of data, many instances
of the same KS can simultaneously deal with new data items. Each of these KSs
then becomes the first in a chain of KSs which interprets the data up the black-
board's levels of abstraction.

KSs in Cage can be executed in parallel with or without synchronization at the con-
trol level. With synchronization, the controller waits for all previously invoked KSs
to complete before invoking the next set of triggered KSs. Without synchroniza-

tion, KSs are invoked immediately when triggered, without waiting for any other
KS.

2-17

Rule Concurrency

Within each KS further concurrency is possible by executing the rules in parallel.
Again, Cage provides several different options for running the rules in parallel.
First the condition parts of rules are evaluated. Next, if the user opts to
synchronize, the controller will wait until all the conditions have been evaluated
before executing the action parts of the applicable rules concurrently. The user can
also specify the parallel evaluation of the conditions with the serial execution of the
actions. Without synchronization, the applicable actions are executed as soon as a
rule’s conditions have been evaluated.

Clause Concurrency

Even finer grain concurrency is possible in Cage within each rule, by executing in-
dividual predicates of the condition part concurrently. Only one option is available,
evaluation of the predicates in parallel, and execution of the action clauses in the
action part of applicable rules in parallel.

2.3. Using Cage

In addition to the speed-up and through-put data about Cage gathered in the experi-
ments described in the next section, we also learned a number of lessons about
programming in a concurrent environment. Implementing the concurrency outlined
above created a number of programming problems. For example, at the rule level,
the state of the blackboard which lead to a rule firing may be changed before that
rule’s actions can be executed. Also, a rule may access values from several differ-
ent blackboard objects with no guarantee that those values are consistent with each
other. Memory contention can be a problem at the clause level, if a number of
clauses refer to the same blackboard object at the same time, negating the benefits of
concurrent execution.

Data inconsistency was alleviated by creating an atomic operation that could
read and then write a blackboard object without allowing any intervening opera-
tions. In addition, a block read operation was defined, so that a rule can read all
relevant information from an object with the guarantee that data will be consistent
within that object. No other operations are allowed to an object during a block read
of that object.

Data coherence can be maintained when running KSs in parallel, by reading all
the slots of a object that are referenced in a KS at the same time, locking the object
justonce. This is in contrast to locking the object every time a slot is read by the
rules. In other words, all necessary blackboard data is collected into local vari-
ables, called definitions in the KS's activation context before any rules are evalu-
ated. Thus all the rules within a KS refer to data from the same time.

In a serial blackboard system one KS precondition may serve to describe several
changes to the blackboard adequately. For example, suppose the firing of one rule
causes three changes to be made serially. The last change, or event, is usually a
sufficient precondition for the selection of the next KS. In a concurrent system,
however, since those changes may occur asynchronously, all three events must be
included in a KS's precondition to ensure that all three changes have actually oc-
curred before the K8 is executed. In general, a simple precondition consisting of an
event token is not sufficient as it was in a serial system. A detailed specification of

the activation requirements of the KSs must be available, either in their precondi-
tions or in the controller.

Occasionally two KSs running in parallel may attempt to change a slot at almost the
same time. It is possible that the first change could invalidate the later changes. To
overcome this race condition, a conditional action--an action which checks the
value of a slot before making a change--was added.

3. Experiments

In this section we will describe seven experiments conducted with Cage,! the appli-
cation used, and the results. The purpose of the experiments was to determine the
speed-up and through-put achievable by Cage under various conditions, concur-
rency specifications, and resource allocation schemes. The first four experiments
measured the speed-up gained by executing various blackboard components in
parallel. The last three experiments related to improving the through-put of the
Cage system.

The application, Elint, is a signal understanding system which iategrates reports
from passive radar collection sites in order to understand the positions and inten-
tions of aircraft traveling through a monitored airspace. The application takes
streams of observations from the various collection sites, zbstracts them into radar
emitters, tracks the emitters, groups them into clusters, and determines the inten-
tions and degree of threat of the clusters. An emitter might be a single aircraft; a
cluster could be a group of planes flying in formation or one aircraft with multiple
radars systems.

Two different input data sets were used for the experiments. The first, called
Lumpy, was a realistic data set with inconsistencies, errors and a variable number
of observations per time interval. The problem with this data set was the variation
in data density that made it very difficult to measure performance. Thus a second
data set, Fat, with a constant data density was created.

Experimerial Method

The methou. usad in the experiments changed over time, based on the results of
earlier expe iv-znts. In the first experiment speed-up was measured very simply,
dividing the "+ e for the application to run a given set of input data on one proces-
sor by the tir« ‘or the same system executed on multiple processors. This speed-up
:neasure did .. work well, however, because the behavior of the system changed
depending on 1- 'w heavily or lightly it was loaded. A rate of “1ta arrival which ad-
equately icade a 4 processor machine caused data starvation for 16 processors.
La.cr experiine: ts used a more equitable comrparison scheme in which different
sampling irtervais were used for different numbers of processors. The sampling
interval for a particular number of processors was set to be the shortest interval
whick stil! produced non-increasing latencies, where latency is the time between the
input of dara and the output of reports based on that data. Speed-up was measursd
by comparing these sampling intervals with the uni-processor sampling intcrval.
The sampling intervals are indicators of the through-put for a particular number of
Processors.

A more complete description of these experiments can be found in [Nii 88).

All measurements generated by the experiments were provided by the underlying
Care simulator.[Delagi 86] Because Care uses a distributed memory architecture, it
was necessary to emulate the shared memory model by using half the processors
for processing and the other half as memory only.! A variation of Qlisp[Gabriel
84],a queue base Lisp including Qlet's and Qlambda’s was created to program the
concurrency.

3.2. Experimental Results

2.5

2.0 1 o
8 151 -
‘g Speed-up
(% 1.0

0.5 4

SOT— 71— d Y ¥ ¥

0 4 8 12 16
Processors

Figurc 2. Results of Experiment 1

Experiment 1 measured the speed-up attainable for a varying numbers of proces-
sors with parallel KSs. For this experiment the conuoller started all triggered KS
executions in parallel, waiting until they were done before selecting another set to
run in parallel. Using the realistic "Lumpy” data set, this experiment exercised all
the problem solving capabilities of the Elint application. Experiment 1 was run se-
rially on one processor and then over multi-processors varying from 2 processor to
16 processors. By comparing the time required to run the data set on one processor
with the time required to run with 2-16 processors. a measure of speed-up was ob-
tained.

As show in Figure 2, the basic speed-up began to level off with 4 processors and
reached 2 with 8 processors. To explain why only a factor of two speed-up was
achieved, we need to look at the senal case. In the serial case (see Figure 3) the
controller selects one KS to execute from among all the KSs applicable at that time.

Figure 3. Basic Control Cycle for Scrial Exccution
In Experiment | all the pending KSs are executed in parallel, as seen in Figure 4.

Un the cxperimental description, the “number of processors™ refers 1o the number of processors
used for processing and docs not include those used for menory only,

2-20

Control —#1 KS +—# Control —#®{ KS}—®{ Control —#{ KS |—»

Figure 4. Basic Cycle with Scrial Control and Paralicl KSs

In Experiment 1 all the pending KSs are executed in parallel, as seen in Figure 4.
Although the KSs were run in parallel "Amdahl's limit” limits the speed-up to the
longest serial componest. in this case the conuoller plus the longest KS. When ali
component parts of the Cage execution were individually timed, it was found that i1
the multi-processor case slightly less than half of the execution cycle time was being
spent in the serial, synchronizing cortroller. Experimeni 1 demonstrates that no
matter how many KSs are run, speed-up gains are limiteé by the duration of the
synchronizing controller and the KSs.

10C0

=

E 3
- °
$ 4
j= (7]

100 d T g T v T 0
g 2 4 € 8
Processors
Figure 5. Results of Experiment 2

Experiment 2 also measurcd speed-up. but in a manner that was felt to be more
fair than the basic speed-up expeniment. using the second speed-up measure ex-
plained in section 3. This and subscquent experiments used the Far data set. Ex-
perime:t 2 was run with three gnid sizes. 1. 4, and 8 processors. Because of what
was lezmed in Experiment 1. in this 2xperiment the KS were excecuted wiihout
synchrenization, reducing the waiting ume. As cach KS completed, the controller
immediately invoked any newly inggered KSs without waiting for any other KSs 1o
finish.

The speed-up obtained by running KSs concurreniiy without synchronizing in the
serial controller was slightly less than 4.{Sce figure 5) This is almost double the
speed-up obtained with synchronization. The time spent in the controtler was re-
duced to almost half of that in Experiment 1. But. it should be noted that the central
controlier is still a bottleneck. Given the architecture of blackboard systems. cen-
tralized controller time can be reduced. but not eliminated. withoui a major shift in
the way we view blackboard systems.

Experiment 3 attempted to increase the speed-up by exploiting parallelism at a
finer granularity than in Experiment 2. We hoped to gain a multiplicative increase
in the overall speed-up for each KS by executing the rules in parallel. The rules
were executed with both condition and action parts running concurrently and with-
out synchronizing between the condition and action parts. Otherwise the ex-
perimental variables of Expe.iment 3 are identical to those of Experiment 2.

The initial results of Experiment 3 were disappointing. For 8 processors only a
5.5% speed-up over Experiment 2 was attained, for a total speed-up of 4.12, For 4
processors there was no speed-up at all over Experiment 2. The overhead of
spawning processes offset any gains from more parallelism. We tried running
Experiment 3 on a 16 processor grid in hopes of alleviating the congestion on the
smaller grids. This resulted in slightly better results, a total speed-up of 5.6. This
extra speed-up is due to the greater availability of free processors to handle the
greater number of processes produced with rule level granularity.

1000 7] !‘6

-5
!
‘s
= 4 Interval :
w -~ Speed-up 3 §
: L, &
g | 2
- 1
100 T T ——r—+0
0 4 8 12 16
Processors
Figure 6. Results of Experiment 3

Throughout the first three experiments one troubling aspect was the apparent low
sampling intervals Cage could support. (The sampling interval gives a measure of
the actual through-put rate.) The minimum sampling intervals for Elint on Cage
were around 120ms which was considerably slower than that of other concurrent
Elint applications, such as the one done on Poligon.[Rice 88] To determine the rea-
sons for this slow through-put various timings on all components parts of Cage
were taken. As expected, most of the time was being spent setting-up and execut-
ing KSs. However, within the KSs a very high percentage of time was spent in the
creation/match process; searching for existing blackboard objects or creating new
ones if no matct was found. A separate creation processor handles this cre-
ation/match process in Cage. A second interesting observation was that the timings
were not regular, they were, in fact, very spiky. Operations that on average took
only a few milliseconds occasionally took a hundred milliseconds or more. An ini-
tial hypothesis was that the spikes were caused by blocked and descheduled pro-
cesses, an indication of problems in resource allocation.

Experiment 4 attiempted to solve both the spikiness problem and the unexpectedly
high cost of creation by allocating some of the processors to specific tasks, thus

freeing those processors from interruption by other tasks. The three most time con-
suming tasks were creation/match, control, and data input, so these three processes
were pre-allocated to specific processor and no other processes were allow to run
on those processors.

The results of this experiment were not ¢ .~clusive. Experiment 4 had a speed up of
3% over experiment 3, or a total speed-up of 5.7x. But 3% falls within the margin
of error for these measurements. The queue lengths for KSs and object cre-
ation/match processors increased, indicating (1)that insufficient numbers of proces-
sors were available for the KSs, because of the three pre-allocated processors and
(2)that the object creation/match handler probably needed two or more processors to
handle its load.

Experiment 5, a second experiment involving specialized processor allocation,
was more successful. In this case only one processor, the input-handler, was used
to execute the entire input procedure. Previously the creation of new input objects
(observations), one for each input data item, had been handled by a separate cre-
ation handler. By eliminating the cost of spawning the separate creation process
and the possibility of blocking the input process while waiting for the creation to
complete, the input object creation time was decreased by 59%. Also the spikiness
in the creation measurements almost disappeared.

One other improvement made in experiment 5 involved the use of a new, more ac-
curate simulator with 4 times faster memory access. This improved the total
through-put by 43%. The combination of local creation by the input handler and
optimizations in the simulator improved the best sampling interval in experiment 5
from 120ms to 40ms.

Experiment ms % over Exp 5
Experiment 5

Single creation processor ; 40 n/a
Experiment 6

Multiple creation processors 31 22%
Experiment 7 .

Local creation 25 3%

Figure 7. Through-put Results of Experiments 5, 6, and 7

In Experiment 6 and 7 the number of processors used was increased to 32. Pre-
liminary runs showed little improvement in through-put due just to the increased
number of available processors. To use those additional processors experiment 6
also increased the number of creation process handlers from 1 to 4. Separate pro-
cessors were used to handle the creation of objects at different levels of the black-
board. These multiple creation handler processors together with the 16 additional
processors reduced the through-put to 31ms, a 22% improvement over the best re-
sults of Experiment 5. This improvement is a strong indication that the single cre-
ation process was a bottleneck.

Experiment 7, the final experiment, was an attempt to remove the creation bottle-
neck completely, by doing all creation on the local processor, not on a special cre-
ation processor. In order to avoid the creation of duplicate objects, the blackboard

2-23

DG re

level object was locked by the KS until a new object was created or an existing
match was found. Local creation, on the same processors as the KS or rule, also
eliminated the need for Qlisp closures. Qlisp closures are one of the most expensive
features of the Qlisp language which Cage uses to program in parallel, because the
Qlisp closure requires the passing of the context of the local processes to the cre-
ation handler. With local creation and without the Qlisp closure through-put was
improved to 25ms, or a 37% improvement over experimeit 5. (See Figure 7)

4. Analysis of Speed-up and Throughput Achieved

The Cage experiments resulted in two important measurements. These are the
maximum relative speed-up, comparing uni-processor runs with multi-processor
runs, and the minimum sampling interval, measuring the total throughput.

4.1 Speed-up
Experiments 1 through 4 resulted in a best speed-up of 5.7x using a 16 processor
grid with KSs and rules running concurrently without synchronization. The factors
limiting this speed-up include:

» The existence of a central controller

* The serial definition section of KSs

» The inefficient allocation of processes to processors

« The high overhead of Qlisp closures

The affects of the central controller were minimized in experiment 2 through the
elimination of synchronization at that level. The definitions, which are the local
bindings done at the beginning of each KS to maintain data coherence (see section
2.3), are the only part of the KS still executed serially. Executing definiiions in
parallel is an option in Cage, but because of the cost of blackboard object creation
(63% of the average definition time) and the difficulty in writing independent defi-
nitions, at most a 15% improvement in speed-up could be expected from concurrent
definitions.

Experiments 4 and 5 showed that careful resource allocation could improve speed-
up. We believe that further improvements in speed-up are possible with tailored re-
source allocation for additional Cage processes. While experiment 6 and 7 only
measured through-put, a prelimary run under similar conditions showed a speed-up
of 6. Some of this gain is also due to the elimination o the use of Qlisp closures
for object creation. Qlisp closures are particularly expensive for Cage because they
entail the copying of the context from the spawning processors to the executing
processor. However, some Qlisp is still required to program concurrency in
Cage's shared memory architecture on the underlying simulator.

4.2 Through-put

The second major result of the Cage experiments is the slow through-put achieved.
The minimum sampling rate for Cage is about 9 times slower than that of a similar
distributed memory system running the same application. The factors limiting
speed-up also limit the through-put. In addition, it should be noted that there was
no optimization of Cage or the Elint application, which could improve through-put
significantly.

5. Conclusions

On the positive side, Cage can execure multipie sets of rules, in the form of XSs,
corcurreatly. A speed-up of 4.12 was achieved by the carly experimenrs, im-
proved to 5.7 with optimizations of the resc.ce a,.ocarion and *7. processors, and
further improved tc siimost 6 with 32 procussors in the last experimesii. G the oth-
eiind. the use of a centrul controller to determme whichi KSs to run in paralic!
arasiically limited speed-up. no matter ho 7 many KSs were executed in parallel,
{he shallow knowledge base of the application limited concurrency at the nile level,
out more rules per KS would increase concurrency. Overall, we belicve that, with
optimization and deeper app:. .ations, Cage can be used as a viable concurrent
tlackboard snvironment,

6. References

[Aelio 86) Nelleke Aiello, User-Directed 7" ontrol of Parallelism: The Cage
System . KSL-86-31. Knowledge Systems Laboratory, CSD,
Stanford Univ., Aprii 1986.

tDclagi 86] Bruce Delagi. CARE Users Manual. KSI.-86-36, Knowiedge
Systems Laboratory, CSD, Stanford Jniversity, 1986.

{Engelmore 88] Rnbc.t Engetmore and Tony Morgar eds). Blackbeard Systems.
AJddison-Wesley. Wokingham, Epgland. 1988.

{Gabriel 84) Ric..2. < P. Gabriel, and John McCarthy. Quene-based Multi-pro-
cessing Lisp. Proceedings of the ACM Symposium on Lisp and
Functional Programming: 25-44, August, 1984

[Nii 791 H. Penny Nii and Nelleke Aiello. AGE: A Knowledge-based
Program fur Building Knowlerge-based Programs. Proceedings

of the 6th International Joint Conference un Artificial Intelligence:
645-655, 1979.

[Nii 88] H. Penny Nii, Nelleke Aiello and James Rice. Experiments on
Cage and Poligon: Measuring the Performance of Parallel Black-
board Systems. KSL-88-66, Knowledge Systems Laboratory,
CSD, Stanford University, October 1988.

[Rice 86] James Rice. Poligon: A System for Parallel Problem Solving.
KSL-86-19, Knowledge Systzms Laboratory, CSD, stanford
University, April, 1986.

2-25

Knowledge Systems Laboratory
Report Mo. KSiL 89-86

The CAGE System V'ser Manual

by
Nelleke Aielle

Knowledge Systems Laboratory
Stanford University
701 Weich Road
Palo Alto, CA 94304

December 1589

The author gratefullv acknowledges the support of the following
fundir g agencies for this project;: DARPA/RADC. under contract
F30602-85-C-0012; NASA. under contrac number NCC 2-220: and
Boeing Computer Services. under contract nu.nber W-266875.

2-26

1. introd'iction

This user manual describes the Cage System and its func’.onality. You
will find a detatled description of the Cage compr.ients, the domain
information the vser must supply to simulate the execution an
application in parallel with Cage. and the syntax for that information.
We have also included listings of the user functions available in Cage
and the global variables defined by Cage, as well as example domain
specifications from the Elint application and a short description of the
underlying simulator upon which Cage executes applications in
parallel.

1.1. What is Cage?

Cage. Concurrent «GE, ‘s an expert system shell for building and
executing applicatior. p-ograms as concurrent blackboard{Nii86]
systemis, With Cagr. the user can control which parts of the
blackbsard system are executed in parallel. A blackboard application
can be imiplemented and debugged serially in Cage. Once the serial
version i~ debugged, concurrency can be irntroduced to different parts
¢f the system, allowing the user to experiment with various
configuratinns. We expect this incremental approach to facilitate the
construction: of concurrent problem-solving systems. In addition to
the basic functionality found in AGE([Ni179, Atello1981a,b], Cage allows
the user divect control of the concurrent execution of many of its
constructs. Otherwise. the two systems are functionally identical.

The basic components of a system built with Cage are:

1. A global data store (the blackboard} on which emerging solutions
are posted. The elemzants on the blackboard are organized into
levels and represented as a set of attribute-value pairs.

2. Globally accessible lists on which control information is posted
(e.g. lists of events, 2xpectations, etc.).

3. An indefinite number of knowledge sources, each consisting of
an indefinite ivmber of condition-action rules.

4. Various kinds of control information :hat determine {(a) which
blackboard element is to be the focus of attention and (b) which
knowledge source is to be used at any given point in the problem
solving process.

5. Declarations that specify which components (knowledge
sources, rules, condition and/or action parts of rules) should bhe

2-27

executed in parallel, and when execution of components should
be syncnronized.

The serial control cycle begins with the selection of a knowledge
source(KS) to invoke. After a change te the blackboard several
knowledge sources may be applicable. Cage uses an event list to keep
track of the changes to the blackboard and selects one of those events
to match against the preconditions of the KSs. The user can specify
which method to use for this event selection, such as FIFO, LIFO, or
some user defined best-first mechanism. Once an event is selected,
the match with the KS preconditions occurs, producing an ordered
set of KSs, which are invoked one at a tme. The rules of each KS are
evaluated and finally the rule actions are execated for those rules with
satisfled conditions. The number of rules executed depends of the KS
specifications; the user may choose to allow only one rule or many
rules to fire per KS invocation. Each action that is fired may cause a
change to the blackboard. These changes are recorded on the event

list and then the cycle repeats. Figure 1 depicts the serial Cage
control cycle.

Initiat
KS
-,
e - 0
hY LY
\ L
= = = - (Select new
Blackboard Focus
KS KS Event List
KS KS KS Determine
“ Relevant
KSs

KS KS KS

Figure 1. Cage Serial Control Cycle

Parallel control can be implemcnted in Cage with several variations of
the serial control; by selecting more than one event from the eventlist
at a time or selecting events asynchronously, thereby executing more
than one KS concurrently. Cage also allov/s mor> than one rule within
a KS to fire concurrently, or more than one clause within a rule, or
numerous combinations of the above. The following is one possible
control cycle for concurrent Cage.

2-28

Figure 2. Basic Cycle with Serial Control and Parallel KSs

A more complete discussion of the concurrent options available in
Cage can be found in Section 3.

2. Cage Application Componerits

Next we will describe the kind of information the knowledge engineer
must supply for each of the major Cage components and how that
information should be structured. Some user input is required in the
specification of each of the major Cage components; the blackboard,
knowledge sources, and control. The user input is similar in
semanfics to that required for applications constructed in the AGE
system, however. the syntax is somewhat different. The concurrency
specifications are outlined in a separate section of this manual.

2.1. Blackboard Structure

There are two major components in the Cage blackboard structure,
the hypothesis classes (frequently called levels in hierarchical
blackboard structures) and the hypothesis nodes. The user must
specify the classes that make up his application's blackboard structure.
For each class, the user must define the fields to be associated with
the nodes created in that class. Nodes are created in those classes,
either a priori by the user or dynamically while executing the user's
rules. The following example from the Elint! application shows the
definition of several classes and their fields in Cage.

CAGE-HYPOTHESIS-STRUCTURE

REPORT-DATA-LEVEL
CLUSTER-LEVEL
EMITTER-MANAGER-LEVEL
EMITTER-LOCATION-LEVEL
EMITTER-LEVEL
OBSERVATION-LEVEL

OBSERVATION-LEVEL

1All_ the examples in this manual are taken from Elint, a knowledge-based
application which interprets real-time radar emissions from aircraft.

2-29

TIME

EMITTER-ID

SITE

LOB
OBSERVATION-TYPE
MODE ‘
SIGNAL-QUALITY
ID-ERROR
REDIRECT-FLAG
ASSOCIATED-EMITTER

Each of the classes (or levels) will be defined as an object with the
attributes as instance variables and with the nodes as instances of the
class objects. (The user can define methods for the level objects
which are generally used for printing information contained in the
nodes on those levels.) Two macros are provided by Cage to aid the
user in defining a blackboard structure, DEFHYPOTHESIS and

DEFLEVEL. The following examples are again taken from the Elint
application.

(DEFHYPOTHESIS-STRUCTURE CAGE-HYPOTHESIS-STRUCTURE
(APPLICATION-SYSTEM-ROOT)
REPORT-DATA-LEVEL
CLUSTER-LEVEL
EMITTER-MANAGER-LEVEL
EMITTER-LOCATION-LEVEL
EMITTER-LEVEL
OBSERVATION-LEVEL)

(DEFLEVEL OBSERVATION
((TIME NIL)
(EMITTER-ID NIL)
(SITE NIL)
(LOB NIL)
(OBSERVATION-TYPE NIL)
(MODE NIL)
(SIGNAL-QUALITY NIL)
(ID-ERROR NIL)
(REDIRECT-FLAG NIL)
(ASSOCIATED-EMITTER NIL})))

The DEFHYPOTHESIS-STRUCTURE function takes three arguments;
the n~me of the hypothesis structure, a root node! and the node

L Application-system-root is provided by CAGE and should be sufficient for most
applications.

2-30

names for the level in the user's particular application. The
DEFLEVEL function expects the name of the level being defined and a
list of pairs--the attributes and initial values (not necessarily NIL) for
those attributes--which will be associated with all nodes created at the
specified level.

2.2. Knowledge Sources

Cage knowledge sources are partitions of the application knowledge.
Each knowledge source(KS) consists of some declarative information
and a set of condition/action rules.

Knowledge Source Declarations

To interpret the rules of a KS properly, Cage needs answers to
some questions about knowledge source control, for example;

1. Under what circumstances should this knowledge source be
invoked?

2. How should the condition parts of rules be evaluated?

3. What levels of the blackboard structure will be changed by this
knowledge source?

4. Which rule or rules out of all the rules whose condition parts
are satisfled should be executed?

5. Are there any local variables to be defined for this knowledge
source?

The following are the major knowledge source control options
available to the user to tailor a knowledge source to his specific needs:

Preconditions: A list of tokens, representing the event names used
in rules. If the focus event has an event name that matches one of the
knowledge source's preconditions, then that knowledge source can be
activated. See the Control Section for more information about events
and how they are used.

Hit Strategy: The hit strategy determines how the rules are
evaluated and executed; which rules have conditions which are true,
how many of those rules should be fired, and in what order should the
selected rules be executed. There are two main hit strategies available
in Cage, Single and Multiple. When a knowledge source with a single-
hit strategy is invoked, the rules of that knowledge source are
evaluated, in order, until one rule's conditions are satisficd. Then the
actions of the action part of the rule are executed. and no further rule
is evaluated. With a multiple-hit strategy, the condition parts of all the

2-31

rules are evaluated, and all the action parts of the rules whose
conditions were true are executed. In conjunction with either single-
or multiple-hit strategies, the user can also specify Onceonly. This
option causes a rule to be marked when its action part is executed.
The marked rules will never be evaluated again during the course of a
run.

Definitions: A list of local variables. The definitions are an
efficlency feature to avoid the repeated calculation of the same
variable. The structure is similar to that of LET pairs of variable names
and expressions, except that an initial value is required for each local
variable.

Rule Order: A list of rule names, representing the rules of the
knowledge source. This is the order in which the rules are to be
evaluated when in serial mode.

Condition-hand-side Evaluator: The user can optionally specify
how the condition side of the rules within the knowledge source are
to be evaluated. There is a default condition-evaluator specified in the
Control data (See the Control Section). The evaluator specified within
a KS will override the default evaluator for the span of that KS. The
LHS-evaluator is a function which determines how the condition parts
are to be evaluated. Cage provides several built-in functions which the
user can select, including a boolean AND and QAND for a concurrent

execution of the boolean AND, if the rule allows concurrent execution
of its conditional clauses.

The macro DEFKNOWLEDGE-SOURCE is provided by Cage to aid the
user in defining knowledge sources.

(DEFKNOWLEDGE-SOURCE <knowledge source name>
&keywords
:PRECONDITIONS «<«list of pre-condition event tokens>
:DEFINITIONS «<list of LET-type bindings>
:KS-CONTROL«list of concurrency specifications for different
parts of the knowledge source-->

(definitions <t or nil>

LHS <serial or parallel>

synchronize <t. nil or first>

RHS <«serial or parallel>)
:RULE-ORDER <ordered list of rule descriptors>

The ks-control list specifies how different components of the KS are
to be executed. If definitions is followed by T then the definitions will
be executed in parallel. Similarly the rule conditions (LHS) and rule
actions (RHS) can be executed serially or in parallel. The value for
synchronize determines whether or not to synchronize the firing of

2-32

rules in a KS. If is T then all the rules conditions will
&l:eevalixated and meﬁ%hﬂ%mggpucable actions. If synchronize is nil,
then rule actions can fire immediately after their conditions evaluate
to T. If synchronize is first. then only the actions of the first rule to
evaluate to T will he executed. The following is an abbreviated
example of a knowledge source specification from Elint.

(DEFKNOWLEDGE-SOURCE Process-Observations
:PRECONDITIONS
(new-observation-read)

:DEFINITIONS
((the.observation FOCUS-NODE)
((observation-time observation-emitter-id ...)
(SMULTIPLE-VALUES the.observation
(S3VALUE the.observation observation-time :latest)
($3VALUE the.observation
observation-emitter-id :latest) ...)
((matched-emitter-list new-emitter-node)
(3CREATE emitter-level
(make-emitter
id (CU:SHARED-LIST observation-emitter-id
emitter-type (cu:global-list observation-type)
associated-observations
(cu:global-list the.observation)
last-observed
(CU:SHARED-LIST observation-time)

)
(3FIND-FOR-SLOT 'emitter-level emitter-id
observation-emitter-id :latest)
‘new-or-matched-node 'process-observations-defs))

:KS-Cai\ITROL (definitions nil LHS :serial synchronize :first

RHS :serial)
RULE-ORDER
(:observation-id-errorp-with-cluster
:observation-id-errorp-no-cluster
:inconsistent-site-observation
:old-emitter-old-location
:create-two-new-nodes)

)

A similar macro DEFRULE is available for defining rules. The rules are
evaluated according to the concurrency specifications in KS-control.
A rule's condition and action clauses are evaluated according to the
rule-control specifications. I.e. QAND will check the rule-control to

determine whether to execute the condition clauses serially or in
parallel.

2-33

(DEFRULE (<ks name> <:rule descriptor>)
JF-PART <form>
:ACTION-PART <form>
:RULE-CONTROL (:lhs <t or nil>
:ths <t or nil>))

The rule-control component specifies how the rule conditions and
actions should be executed, serially or concurrently; nil or T
respectively. An example illustrating the use of DEFRULE in the Elint
system is given below.

(DEFRULE (process-ob<ervations :create-two-new-nodes)
:IF-PART
(QAND new-emitter-node new-emitter-location)
:ACTION-PART
(PROGN
(SSUPERSEDE new-emitter-node
((emitter-my-location
(CU:SHARED-LIST new-emitter-location)))
new-emitter
' process-observation-2-new-nodes)
($SUPERSEDE the.observation
((observation-associated-emitter
(CU:SHARED-LIST new-emitter-node})))
‘emitter-matched)
‘process-observations-2-new-nodes))
(SMODIFY new-emitter-location
((emitter-location-control-informaﬁon-site
(LIST observation-site
observation-time the.observation)))
‘new-emitter-location)

'process-observations-2-new-nodes)))
:RULE-CONTROL (:lhs t :rhs nil)
)

This rule has two conditions, a new emitter node and new emitter-
location node have been created, and three actions. linking the two
new nodes with each other and the observation node which led to
their creatfon. In this case the concurrency specifications indicate
that the conditions should be evaluated in parallel. but that the actions
should be executed serially.

2.3. Control

All Cage control information is referenced through the Control-
Structure object which is basically the same as in AGE. The user can
specify various parts of controi by setting the appropriate global
variables. The major components of the Control-Structure are:

2-34

User-Initialization: This is a user-defined function, handling
any initialization needed for the user's program, for example, setting-
up the appropriate blackboard structure from the input data. The
name of the user-initialization function should be stored in the global
variable °*INITIALIZER®.

Termination-Condition: Another user-defined function. This
function determines when the application: is to be terminated. The
Termination-Condition can access the event list, expectation list. and
the blackboard nodes. It should return a non-nil value when the
application is to be terminated. (*TERMINATION-CONDITION®*}

User-Post-Processor: When the termination condition iIs true, a user
supplied post processing function is invoked. This function can be
used to print out the application’s results in a readable form, or to
handle any other post processing details. (*POSTPROCESSOR?)

Event-Info: This is a pointer to the Event-Information
object which contains both the user-specified event-scheduling
information and run-time data, including the event list and the
current-focus event. See the description of event-driven-control later
in this section for more information on how event-information is used.

The actual structure of Event-Info is as follows:

(selection-method agenda order collection-rules matcher seeker focus
steplist number-of-steps)

where selection-method is a function--that the user specifies in the
global variable *EVENT-EXTRACTOR®--which picks an event to act
upon. Items on the event steplist are the events that have occurred so
far. Once an event is selected it is deleted from the event steplist..
The events have the following structure:

(type node hypothesis-change support rule number predecessor effect)

Agenda allows the user to specify a predetermined priority for event
types and order specifies how to compare the events on steplist with
the agenda, ie in LIFO or FILO. Collection rules consists of a list of
event types which can be collapsed if more than one of that type
appear on the event list. This allows the system to generate many
events of the same type without forcing it to follow-up on each one
individually. The focus is the currently selected event.! See the
section on Event-driven control for a more detailed description of the
usage of items in Event-info.

1Used in serial execution.

2-35

Expect-Info: Similar to the Event-Info, this object keeps
track of the expectations generated by the application and information
specifying Fow those expectations are to be scheduled.
EXPECTATION-EXTRACTOR?® holds the name of the selection funtion.
Expectations also require a matcher function to determine when an
expectation matches the current state of the blackboard.

Control-Rules: A list of control rules defined by the user to
determine when to execute which control step (event or expectation).
Each ccntrol rule consists of a name, a condition (an arbitrary
expression), and a steptype (either event or expect). The following
example of a control rule says that if there are any events pending on
the event list, then do an event next.

Example:

Control Rule: Crule-1
Condition: event-info@steplist
Step: event

It would be defined using the specification function, DEFCUNTROL-
F'JLE, as follows:

(DEFCONTROL-RULE :Crule-1
:condition event-info@steplist
:step :event)

Left-hand-side-Evaluator: The default function for evaluating the
condition part of rules. This default function can be over-ridden by
specifying a different evaluator inside a knowledge source (see Section
2.2). For most applications the Cage-provided QAND function will
suffice. It is a serial or concurrent hoolean AND depending on
whether the condition-side clause evaluation is to be in parallel or not.

A simple boolean AND may be used, but then the clauses can not
evaluated concurrently.

Input Data: The user must define a function to handle the input
data, as described below. This procedure is executed by its own
process, automatically inputting data according to time tags associated
with the data. If the user so specifies, this process can run on a
separate processor. (See Section 5.2.)

Input-Procedure(Record, Time): Given an input record consisting of
a stream of time-tagged data, a record is retrieved automatically at the
correct time by Cage using this function. This function should also do
some actions on the data, for example, adding it to the blackboard.

At the beginning of each run the user will be asked to specify an input
data fle by typing in the file name or selecting a file from a menu of

2-36

re-specified input data file names. The data file consists of records
Ehg.tsgan be reag by the above function, i.e. the format of the records is
left to the user. However, a time stamp is mandatory on each input
record.

Event-Driven-Control: A blackboard system can be executed in
several ways, the simplest being event-driven. In an event driven
system each time a rule action is executed the system records that
change on the blackboard as an event. Each event is added to a list
called the event list. The scheduler selects an event from the event
list to become the next focus event. The type of the focus event is
matched against the preconditions of the knowledge sources, and all
the matching knowledge sources are act.vated. The rules of the
activated knowledge sources are then evaluated, those rules with
satisfied conditions are executed and the cycle repeats until the
termination condition is true.

To run a blackboard model with an event-driven control structure, the
following control information must be supplied by the user.

1. A Control Rule which always returns event as the next s-ep.
(See Control Rule example above.)

2. Event-Info, including a Selection-method and possibly some
Collection rules. (See below.) For event-driven control you do not need
either a matcher or seeker, and the focus, steplist, and number-nf-steps
contain run-time information generated by the system.

Selection-method: a function that selects an event for focus from
the event list. The user can write his own best-first selection method
or use one of the Cage provided functions, FIFO, LIFO, or AGENDA. If
the AGENDA selection method is chosen, the user must also specify
the events on the agenda and their order. In this case the S<lection

Method should have the form (AGENDA <order><an agenda of ordered
event names>).

Agenda: An ordered list of event names supplied by the user.

Order: LIFO or FIFO order in which to check the agenda.

There may be several different events of the same type on the event
list.

Collection rules: In some applications many events of the same
type and on the same node are generated. By specifying an event
name in the collection-rules list of Event-Info, only one of the events is
pursued while the others are collected and deleted from the event list.

3. Concurrency Specifications

Using the concurrency control specifications, the user can alter the
simple, serial control loop of Cage by introducing concurrent actions.
Cage allows parallelism ranging from concurrently executing
knowledge sources all the way down to concurrently executing the
conditions and actions of the rules. The serial execution and parallel
executions possible in Cage are summarized below.

Knowledge Source Control

serial:

Pick an event and execute the associated knowledge
sources.

parallel:
1. As each event is generated, execute the associated
knowledge sources in parallel.l
2. Wait until all active knowledge sources complete
execution, generating a number of events, and then
execute concurrently the knowledge sources relevant to
those events.
3. Wait until several events are generated then select a
subset and execute the relevant knowledge sources for all
the subset events in parallel.

Within Knowledge Sources
serial:
1. Evaluate the bindings.
2. Evaluate the condition sides, then execute the action
sides of one rule whose condition side matched.
3. Evaluate all the condition sides then execute serially
all the actions of rules whose condition side matched.

parallel
1. Evaluate the bindings in parallel.*
2. Evaluate all condition sides in parallel,
a. then synchronize (i.e. wait for all the condition

side evaluations to complete) and choose one action
side, or

b. synchronize and execute the actions serially (in
lexical order), or

¢. execute the actions in parallel as the condition
side matches.*

Within Rules
serial:

Evaluate each clause then execute each action.

IThe starred options indicate the greatest use of concurrency.

2-36

allel:
par Evaluate the condition-side clauses in parallel then
execute actions of the action side in parallel.*
(First nil clause --> no match;
all non-NIL clauses --> match.)

Within the clauses
serial:
Lisp code

parallel:
Qlambda code

3.1. Syntax of Parallel Specifications in Cage

At the top level, the user can specify how the knowledge sources
should be executed, serially or in parallel, with or without
synchronization. The variable *CAGE-CONTROLS* contains a list of
keywords and values including the :knowledge-sources to control the
KS execution. The allowable values are :no-synchronization, :knowledge-
sources, and nil, which run the knowledge sources in parallel without
synchronization, with synchronization. and serially, respectively, If
the KSs are run with synchronization then the control loop will wait
for all the KSs to complete before invoking the next set of KSs in
parallel from all the events added to the eventlist by the previous set
of KSs. If the KSs are executed without synchronization then a change

made by a KS is not recorded on the eventlist but instead immediately
invokes any subsequent KSs.

Within a knowledge source the user can specify how the components
of that KS should be executed, serially, in parallel, and with or without
synchronizing. Using the Defknowledgesource function, the
concurrency can be specified using the keyword :ks-control. The
definitions of KS can be executed either serially or concurrently, as
can the condition sides of the rules and the action sides. If
synchronize is T then all of the conditions are evaluated, waiting for
completion, before the actions are executed. If synchronize is first
then Cage evaluates all the conditions in parallel, but only waits for the
first rule who's condition evaluates to T before executing that rule's
actions. If synchronize is nil then Cage executes a rules actions

immediately after its conditions evaluate successfully, without waiting
for any other rules.

:ks-control (definitions <t or nil>
LHS <serial or parallel>
synchronize <t, nil or first>
RHS <serial or parallel>)>

2-39

In a rule the user can control the execution of the condition and
action clauses. In Defrule the keyword is :rule-control.

:rule-control (:lhs <t or nil>
:rhs <t or nil>)

3.2. Parallel Functionality for Cage

A number of special purpose functions and macros were added to Cage
to facilitate the implementation of concurrency in a shared-memory
model. These include the ability to lock nodes while accessing slot
values, the locking of blackboard levels while creating or deciding to
create a new node, new conditions allowed on the action side of rules,
an input handler and a trace mechanism. The functions beginning
with a $ sign are intended for general use by application builders, and

are described in the next section with the rest of the Cage user
functions.

The functions beginning with the package designation cu: and
described below are lower level functions from the system which
emulates Cage's shared memorv model on the Care simulator's
distributed memory. These functions provide access to data
structures between processors. Local data structures can only be
accessed by the local processor, they must be copied into dynamic
space before other processors can access them. For more detailed
information about these functions and the shared memory
architecture, see [Saraiya 89] and [Delagi 87].

-shared- list)-function
List is a shared list in "dynamic space"--thus this function copies
the list into "local space" corresponding to the processor at which the
call is made and returns the new copy.

cu:in-memory(site &body body}-macro
Ensures that any data structures created in "dynamic space" will

be in the memory module corresponding to site, within the dymamic
scope of IN-MEMORY.

cu:shared-list(&rest elements)-function
Constructs a list in "dynamic space" with elements; returmns it.

cu:shared-lock({lock-address)-function
Locks a spin-lock: lock-address is the remote-address of a
memory cell in dynamic space. Returns when lock is acquired. °

cu:shared-read(address)-function

2-40

Read the contents of memory cell corresponding to remote-
address, address.!

_ - function
Write contents into the memory cell corresponding to
remote=address, address.

cu;without-clock(expression)

The expression is executed off the clock. This macro is useful
for debugging and I/0 that should not be timed with simulation of the
user's application.

domain-ms?--global variable
Contains the data rate in milliseconds. This should be set by the
user.

main-time{}--macro

Returns the domain time, ie simulation time minus the base
time in domain ms.

- - --function

Displays a menu cf parallel options, allows the user to select
options, and changes the default specifications to the user's
specifications.

parallelp(option)--function

Returns T if option is set to execute in parallel.

4, Cage User Facilities

In this section we describe a set of user functions, macros, and global
variables provided by Cage to access the blackboard and generate
events from the knowledge source rules. We would discourage the
user from building rules which access the blackboard through other
means, or from accessing the blackboard from outside the rules. Many
of the following functions and macros have side affects, such as
maintaining history lists, necessary to the proper functioning of Cage.

4.1. User Punctions? and Macros
> i ccessor-value-pairs change-type &optional

Add a new value to the list of existing values of $node and
attribute. Accessor-value-pairs is a list of pairs, of slot (Accessor)

1 Automatic coding/decoding of structured data occurs on transfers between
. "local” and "dynamic" spaces. See pp 2-4 of (Saraiya 89].

ZUnless otherwise stated, all the items in this section are Lisp functions.

2-b1

indicating the slot to be changes and the new value to be added to the
existing values of node and slot.

-v - -
--macro
Add a new value, deleting all old values of node and attribute.

- -V - n -
--macro
If condition is true, make a change to the blackboard at $NODE
and accessors slots, replacing all the old values with new value from
accessor-value-pairs

$create(level-name creation-form_finder-form change-type
--macro

Create a new node(s), using creation form, on the blackboard if
the node specified by finder-form doesn't exist yet. $Create does not
allow the creation of two copies of the same node by different
processes because it locks the level while creating the first, and
checks for existing nodes when trying to create the second. Change-
type indicates which event is causing this creation. Support can be the

name of the knowledge source containing the rule with this call to
$Create or other documentation. :

value(n r tional sel r
Read the blackboard node and attribute, returning a value stored
there. If selector equals :latest return the newcst (ie. latest) value. If
selector is not given or not equal to :latest, return all the values.
$value is an explicit macro to allow Cage to keep track of all
references to the blackboard.

multiple-val n & value-forms)--macro
Retrieve several values from the blackboard at the same time.
with only one call tc ihe $node and thus only one memory request to
the process where that node resides. This macro allows the user to
retrieve multiple values from a node without interruptions, ie. no

write can change any values on the selected node until all the
requested values have been read.

-for- llection predi isfaction
Finds all nodes in collection that satisfy predicate. If satisfaction

is non-nil, $find-for-predicate will return all nodes in collection that
do not satisfy predicate

$find-for-slot(collection_slot value select- tisfaction

Find all nodes in set collectio'1 which have a slot with value equal
to value. Collection can be a level specification or a set of levels. If
satisfaction is non-nil, $find-for-slot will retum all nodes in collection
that do not have the specified slot and value.

2-42

.

vent- change- hypothesis-lev hesis-
element link-r:Qc -and-valu
ggmmgn;l

Allows the user to ¢iter the blackboard from outside a knowledge
source and generates everits for those changes. This function is useful
in dealing with input data, le. writing data on the blackboard or
recording preprocessing results on the blackboard. $propose should
not be used in general. The KSs should be the only component to
write on the blackboard and generate events.

$null-event($node change-type &optional supportj--macro
Generate a null event, i.e. add an event to the eventlist without
making a change to the blackboard.

$LIFO
Last-In, First-Out event scheduler.

$FIFQ
First-In, First-Out event scheduler,

Select all events at the same time.

4.2. Global Variables

The following global variables are available to the user to aid in the
development and execution of Cage applications.

lefault-parallel- ification
Global list of components to execute in parallel, generated by the
system from the user’'s concurrency specs.

cage-ks-names
List of knowledge sources in an application, generated as the
knowledge sources are defined.

propose-history
History list of all event generating actions.

blackboard
Pointer to the top level object in the blackboard. The levels can
be accessed from here.

levelnames
‘ist of names of the levels on the application blackboard.

thgnsn

2-43

Tne current focus event, the latest event selected from the
eventlist.

base-time®

The real time that the current simulation started, used to
calculate the time passed since the start of the simulation.

5. Care Components

Underlying the Cage system is a model of a MIMD, shared-memory,
parallel architecture. This model and Cage have actually been
implemented on two different simulators. One (Cage-Logs) is
implemented on a low-overhead version of Qlambdal(Gabriel84]. The
second is Cage-Care which is built on a distributed, parallel simulator
called Care[Delagi86al. This manual is intended to describe the Cage-
Care implementation.

Cage-Logs is intended for guick conversions of serial blackboard
systems to parallelism. It uses the Cage language for a clear, non-lisp
representation of the user's rules. It executes a simulation relativeily
quickly, showing the user where and when concurrency is being
exploited. Using Cage-Logs one can debug a parallel blackboard
system and calculate the potential concurrency quickly. Cage-Logs
assumes there are as many processors available as needed. The major
disadvantage of Cage-ioqs is that it cannot make accurate
measurements of the parallelism achieved. The Cage-Logs system is
described in earlier Cage documentation[Aiello86], and the Cage
language is a variation of the L100 language[Rice86b]. Cage-Care is
intended for detailed simulations, measuring many factors during the
simulation. It therefore executes an application much slower (1-2
orders of magnitude) than either its serial version or the Logs version.

5.1. Shared-Memory model

In order to simulate a shared memory machine on a distributed
simulator we have set up the following model. The odd numbered
rows of the grid of processors are used as regular processors to run
the generated processes in parallel. The even numbered rows are
used only as memory. Since the grid is fully connected. the processes

will have roughly equal access to all parts of the memory as in a shared
memory machine.

5.2. Circuits

Currently, Cage can run on CARE with circuits of different sizes
varying from 2 to 32, ie 1 to 16 processing processors and the same
number of memory processors. *CIRCUIT* is a global variable through

2-44

which the user can determine which size circuit to use. The user can
specify that certain processes be executed on specific processors by
setting the variables sControl-Processor*, *Input-Handler-Processor®,
and *Creation-Handler-Processor*. The user can also allocate
different memory sites for various application da‘a. The following is a
typical Cage configuration file for a 16-site circui' (8 processors).

(setq *Control-Processor* (2 3))
(setq *Input-Handler-Processor* ‘(1 1))
(setq *Creation-Handler-Processor* (1 3))
(setq *QLisp-Task-Queue-Memory* (3 2))
(setq *Blackboard-Memory* (1 4))
(setq *Control-Memory* (2 4))
(setq *Hypothesis-Memory* 2 2)

(setq *Input-Data-Memory* 1 2))
(setq *Level-Memories* "

: application dependent alist ((level . location)...)
5.3. Data Rates

DOMAIN-MS is a global variable containing the rate, in milliseconds,
at which data is read. Data is read into the system by an independent
data handler as described earlier in the Control Section.

5.4. Instruments

A number of different instruinents are available from the CARE system
which allow the user to monitor the simulation of his application. The
CARE User Manual{Delagi 86] describes in detail how to use these
instruments.

6. How to run Cage

Cage was designed for use on a Symbolics LISP machine under release
6.1 and under the compatible version of Care, released on June 8,
1988. The top level, calling function for Care-Cage is BB:BOOT-CAGE.
Assuming the user has defined all the necessary application
components, BOOT-CAGE will initialize the system. start the input
handler and pass control to the control loop. A sample start-up file,
illustrating the load-up procedure and other essential initializations, is
listed in Appendix C of this manual,

References

[Alello 81a] Nelleke Aiello. Conrad Bock, H. Penny Nii, and William
C. White, Joy of AGE-ing: An Introduction to the AGE-1
System. HPP-81-23, Heuristic Programming Project.
CSD, Stanford University, October 1981.

2-45

[Aiello 81b])

[Alello 86]

[Afello 88]

[Delagi 86]

[Delagi 87]

Nelleke Aiello, Conrad Bock, H. Penny Nii, and William
C. White, The AGE Reference Manual HPP-81-24,
Heuristic Programming Project, CSD, Stanford
University, October 1981.

Nelleke Afello, User-Directed Control of Parallelism: The
Cage System.KSL-86-31, Knowledge Systems Laboratory,
CSD, Stanford University, April 1986.

Nelleke Aiello, Cage: The Performance of a Concurrent
Blackboard Environment. KSL-88-80, Knowledge Systems
Laboratory, CSD, Stanford University., December 1988.

Bruce Delagi. CARE Users Manual. KSL-86-36,

Knowledge Systems Laboratory, CSD, Stanford University,
1986.

Bruce A. Delagl, Nakul P. Saraiya, and Greg T. Byrd.
LAMINA: CARE Applications Interface. KSL-86-67,
Knowledge Systems Laboratory, CSD, Stanford
University., November 1987.

[Engelmore 88] Robert Engelmore and Tony Morgan, (eds).

[Gabriel 84]

iNti 79]

[Nii 86]

[Nit 88a]

[Nii 88b]

[Rice 86)

[Rice 86b]

Blackboard Systems. Addison-Wesley. Wokingham,
England. 1988.

Richard P. Gabriel, and John McCarthy. Queue-based
Multi-processing Lisp. Proceedings of the ACM Sympo-
sium on Lisp and Functional Programming: 25-44, Au-
gust, 1984

H. Penny Nii and Nelleke Aiello. AGE: A Knowledge-
based Program for Building Knowledge-based Programs.
Proceedings of the 6th Intemational Joint Conference on
Artificial Intelligence: 645-655, 1979.

H. Penny Nii. Blackboard Systems KSL-86-18, Knowledge
Systems Laboratory, CSD, Stanford University, April
1986. Also in Al Magazine, Vol. 7-2 and vol 7-3, 1986.

H. Penny Nii, Nelleke Aiello and James Rice. Frameworks
Jor Cocurrent Problem Solving: A Report on Cage and
Poligon. ™¥SL-88-02, Knowledge Systems Laboratory,
CSD. Stanford University, March 1988.

H. Penny Nii. Nelleke Aiello and James Rice. Experiments
on Cage and Poligon: Measuring the Performance of
Parallel Blackboard Systems. KSL-88-66, Knowledge

Systems Laboratory. CSD. Stanford University, October
1988.

James Rice. Poligon: A System for Parallel Problem Solv-
ing. KSL-86-19. Knowledge Systems Laboratory, CSD,
Stanford University. April, 1986.

James Rice. The Poligon User's Manual. KSL-86-10.
Knowledge Systems Laboratory. CED. Stanford University.

2-46

[Rice 88] James Rice. The Advanced Architectures Project, KSL-
88-17. Knowledge Systems Laboratory, CSD, Stanford
University, March, 1989.

(Rice 89] James Rice and Nelleke Afello, See How They Run... The
Architecture and Performance of Two Concurrent
Blackboard Systems. KSL-89-08, Knowledge Systems
Laboratory, CSD, Stanford University, January, 1989.

[Saraiya] Nakul P. Saraiya. A Shared Memory Lisp Package for
CARE. KSL-88-85, Knowledge Systems Laboratory, CSD,
Stanford University, January, 1989.

Appendix A. Global Variables

Values for the following global variables should be specified by the user
as part of his/her application specification. Most are also described

earlier in this manual in the sections that pertain to their
functionality.

initializer

(FUNCTION <name of initialization function>)
*termination-condition®

(FUNCTION <name of termination function>)
Zuser-post-processor®

(FUNCTION <name of post processing function>)

A function to select events off the eventlist. LIFO and FIFO are
provided or the user can write his/her own function.

expectation-extractor
A function to select events off the expectation list. LIFO and FIFO
are provided or the user can write his/her own function.

A set of rules to determine what type cf item to handle next,
generally an event or expectation.

] L

Set to T if in debugging mode, to generate extensive traces of
the application execution.

input-data-file
The file path specification for the input data of the application.

2-47

:I‘he ﬁl.e path specification for output trace flle.

The number of milliseconds to wait between data readings in
simulated time.)

Sp;cify which processor in the CARE circuit to use as the
control processor , ex, ‘(2 3).1

*Input-Handler-Processor®
Specify which processor in the CARE circuit to use as the input
handler, perhaps ‘(1 1).

*Creation-Handler-Processor?
Specify which processor in the CARE circuit to use as the
creation handler, (1 3).

Specify which processor in the CARE circuit to use for the QLisp
task queue, '(3 2).2

Blackboard-Memory
Specify which processor in the CARE circuit to use as the
blackboard memory, ‘(1 4).

*]

Specify which processor in the CARE circuit to use as the
control memory, ‘(2 4).

Hypothesis-Memory
Specify which processor in the CARE circuit to use as the
hypothesis memory, (2 2).

tInput-Data-Memory?
Specify which processor in the CARE circuit to use as the input
data memory, (1 2).

*Level-Memories®

The level memories are assigned dynamically by Cage.
depending on the application. The structure of this variable is an alist.
associating the level with its processor, ((level . location)...}. initially

0.

'Remember, processors in the odd numbered rows of the processor grid are
used as processors.

2 . .
<Even numbered processors are useé for memory in this shared memory
model.

Appendix B, Cage Macros and Functions

The following functions and macros are available to the user to develop
a Cage application. Many of them are also described earlier in this
manual in their respective, relevant sections. For examples of their
use, see the sample application appendix at the end of this manual.

- re{<n f black > (<pam L
. <list of levels>}
Generates a hierarchical hypothesis structure of the given levels
for a blackboard.

<levi > . <li lot n in >

Defines a level of the hypothesis structure with given slots and
inittal values, which can be nil.

W rce{<knowl u n >
nditi < f Vi >
ns <l - indi >

:rule-order <ordered list of rule descriptors>}
Defines a knowledge source with the given specifications.

Defrulel{<ks name> <:rule descriptor>) :if-part <form>
:action-part <form>
:rule-control <rule concurrency specs>)
Defines a rule with the given specs within the ks named.

f rol- <name> :condition <s-expression>

;step <EVENT/EXPECTATION>)
Define a control rule to invoke a given step.

Appendix C. Sample Cage start-up file
:::-*- Mode: Lisp; Package: User: Base: 10: Syntax: Zetalisp -*-

(SEND TV:SELECTED-WINDOW :SET-MORE-P NIL)
(SETF SI:PRINLEVEL 3)

:Either load the system files for the following systems or add them to
your local system directory.

{(MAKE-SYSTEM "CARE" :SILENT :NOWARN :NOCONFIRM)
(MAKE-SYSTEM "QL" :SILENT :NOWARN :NOCONFIRM)
(MAKE-SYSTEM "CC" :SILENT :NOWARN :NOCONFIRM)

(MAKE-SYSTEM "ELINT-CARE" :SILENT :NOWARN
:NOCONFIRM)

(GC-OFF)
:Load a CARE circuit, .i.e octorus-16
(CU:SIMPLE :design 'OCTORUS-16 :RUN NIL)

Assign processes to processors.

(setq *Control-Processor* "2 3))
(setq *Input-Handler-Processor* ‘(1 1))
(setq *Creation-Handler-Processor* (1 3))
(setq *QLisp-Task-Queue-Memo:y* '3 2))
(setq *Black’ oard-Memory* (1 4))

(setq *Control-Memory* "2 4)
(setq *Hypothesis-Memory* (2 2)

(setq *Input-Data-Memory* (1 2))
(setq *Leve'-Memories* "0)

.Care specs for Cage, simulating shared memory instead of distributed.
(SETQ CARE:***PRODUCTION-CARE-RUN*** T)

(PUTPROP :VALUES-MEMORY-REQ T 'C:EVALUATOR-WAIT)

;specify the input and cutput files for this run.

(SETQ BB:*INPUT-DATA-FILE* "device:>yourdirectory>all-at-

once.obs)

(SETQ BB:*OUTPUT-TRACE-FILE* "device:>yourdirectory>any name

you like")

;Set desired control specs and debugging flags.

(SETQ BB:*CAGE-CONTROLS* '(:NO-SYNCHRONIZATION
:KNOWLEDGE-SOURCES))

(SETQ BB-*DEBUGGING-CAGE* T)

(SETQ QL:***DEBUGGING-QL*** NIL)

(SETQ CU:***COUNT-LOCKS*** NIL)

(SETQ BB:***TIME-trace*** NIL)

(SETQ BB:*DOMAIN-MS* 50.0) ;controls the data rate

(SETQ SI:GC-RECLAIM-IMMEDIATELY-IF-NECESSARY T)

;Load ti.: patch files,
(SETF (‘CAGE-PA’I CHES*
‘uevice:>yourdirectory>ql>Stop-Process-Patch”
"device:>yourdirectory>ql>memory-request-patch”
“device:>yourdirectory>ql>Areas”
"device:>yourdirectory>Symbolics-GC"
'device:>yourdirectory>time-trace”
"device:>yourdirectory>no-creator-processors
)
)

2-50

(MAPC 'LOAD *CAGE-PATCHES®)

(DEFUN BB:RUN ()

)

(UNWIND-PROTECT
(GC-ON :dynamic t :ephemeral nil)
(BB:BOOT-CAGE)

)
(B:KILL-SIMPLE-HARDCOPY) ;don't tie-up the printer after
;long runs.
(CLOSE BB:*INPUT-DATA-STREAM?®*)

)

:Cail BB:RUN to start the simulation.

Appendix D, Sample Cage application specifications

D.1. Hypothesis Structure

(DEFHYPOTHESIS-STRUCTURE CAGE-HYPOTHESIS-STRUCTURE
(APPLICATION-SYSTEM-ROOT)
REPORT-DATA-LEVEL
CLUSTER-LEVEL

EMITTER-MANAGER-LEVEL

EMITTER-LOCATION-LEVEL
EMITTER-LEVEL
OBSERVATION-LEVEL

)
(DEFLEVEL REPORT-DATA

)

((NEW-CLUSTERS NIL)
(CLUSTER-SPLITS-AND-MERGES NIL)
(CTTISTER-REFINEMENTS NIL)

{17 STER-THREATS NIL)

ft -)T-SITUATIONS NIL)
(EMITTER-THREATS NIL)
(NUMBER-OF-CLUSTERS NIL)
(CLUSTER-NODES NIL)

(ACTIVITY NIL))

(DEFLEVEL CLUSTER

(ID NIL)

(LAST-UPDATE NIL)
(FIX-HISTORY NIL)
(SPEED-HISTORY NIL)
(HEADING-HISTORY NIL)
(PLATFORMS NIL)
(NUMBER-OF-PLATFORMS NIL)

2-51

(ACTIVITY NIL)

(SPLITS-AND-MERGES NIL)

(ASSOCIATED-EMITTERS NIL))
)

(DEFLEVEL EMITTER-MANAGER
((RECYCLE-CANDIDATES NIL)
(EMPTY-NODES NIL)
(NODES NIL))

)
(DEFLEVEL EMITTER-LOCATION
((LOB NIL)

(FIX NIL)
(HEADING NIL)
(ID NIL)
(LAST-OBSERVED NIL)
(MY-EMITTER NIL)
(CONTROL-INFORMATION-SITE NIL)
(CLUSTER-SPLIT-DEMON NIL))

)

(DEFLEVEL EMITTER
((ID NIL)
(EMITTER-TYPE NIL)
(STATUS NIL)
(CONFIDENCE NIL)
(ID-ERROR NIL)
(LAST-OBSERVED NIL)
(NO-OF-OBSERVATIONS NIL)
(ASSOCIATED-OBSERVATIONS NIL)
(ASSOCIATED-CLUSTER NIL)
(OBSERVATIONS-RECYCLED (cu:shared-list NO))
(CLUSTER-RECYCLED (cu:shared-list NO))
(MY-LOCATION NIL) (CLUSTER-DEMON NIL)
(THREAT-CHECK-DEMON (cu:shared-list YES))
(RECYCLE-CANDIDATES NIL)
(EMPTY-NODES NIL))

)

(DEFLEVEL OBSERVATION
{{TIME NIL)
(EMITTER-ID NIL)
(SITE NIL)
(LOB NIL)
(OBSERVATION-TYPE NIL)
(MODE NIL)
(SIGNAL-QUALITY NIL)
{ID-ERROR NIL)
(REDIRECT-FLAG NIL)
(ASSOCIATED-EMITTER NIL)

2-52

D.2. Knowledge Base

(DEFKNOWLEDGE-SOURCE Process-Observations
:‘PRECONDITIONS
(new-observation-read)

‘DEFINITIONS
((the.observation FOCUS-NODE)

((observation-time observation-emitter-id ...)

($SMULTIPLE-VALUES the.observation
(SVALUE the.observation observation-time :latest)
($VALUE the.observation observation-emitter-id
:latest)

((matched-emitter-list new-emitter-node)
($CREATE emitter-level
(MAKE_EMITTER
id {CU:SHARED-LIST observation-emitter-id
emitter-type (CU:SHARED-LIST observation-type)
associated-observations
(CU:SHARED-LIST the.observation)
last-observed (CU:SHARED-LIST observation-time)

..)

(SFIND-FOR-SLOT 'emitter-level emitter-id
observation-emitter-id
:latest)

'new-or-matched-node 'process-observations-defs))

)

:KS-CONTROL (definitions nil lhs :serial synchronize :first
rhs :serial)

:RULE-ORDER

(:observation-id-errorp-with-cluster
:observation-id-errorp-no-cluster
:inconsistent-site-observation
:old-emitter-old-location
:create-two-new-nodes)

(DEFRULE (process-observations :create-two-new-nodes)

IF-PART

(QAND new-emitter-node new-emitter-location)

:ACTION-PART

(PROGN ($SUPERSEDE new-emitter-node
((emitter-my-location
(CU:SHARED-LIST new-emitter-location)))
'new-emitter

2-53

'process-observation-2-new—nodes)

($SUPERSEDE the.observation
((observation-associated-emitter
(CU:SHARED-LIST new-emitter-node)))
'emitter-matched)
'[process-observations-2-new-nodes))

($MODIFY new-emitter-location
((emitter-location-control-information-site
(LIST observation-site
observation-time the.observation)))
'new-emitter-location)
'‘process-observations-2-new-nodes)))
:RULE-CONTROL (:lhs t :rhs nil)

)
D.3. Control Information

(setq *Initializer* 'ELINT-INITIALIZATION)
(setq *Termination-condition* 'ELINT-QUIT)
(setq *Postprocessor* 'PRINT-RESULTS)

(setq *Event-extractor* (function $ALL-SORT))
(setq *Expectation-extractor® (function $FIFO))
(setq *Goal-extractor* (function $FIFO))

(setq *Cage-controls* '(:serial))

(defvar *agenda*

‘(clock-tick cleanup- cluster new-observation-read
corrected-emitter corrected-emitter-location
new-emitter-location
matched-emitter-location new-emitter
computed-fix
earlier-fix-computed associate-emitter-cluster
emitter-cluster-already-matched
assoc-cluster-emitter new-cluster
matched-cluster))

(DEFCONTROL-RULE :CRULE-1

:condition (not (equal (send EXPECT-INFO :STEPLIST) nil)
:step :EXPECTATION)

(DEFCONTROL-RULE :CRULE-2
:condition (not (null (control-events)))

2-54

:step :EVENT)
(setq *input-data-file* "s2:>alello>basic.input’)
(defvar. *output-trace-file* "local:>aiello>trace-elint-on-care.lisp”)

{defvar *time-trace-file* "local:>aiello>trace-times.lisp")

D.4. User Functions

(DEFUN TIME-OF-INPUT-RECORD
(RECORD)
(DECLARE (UNSPECIAL RECORD))
(if (equal record 'eof) nil (first RECORD))

(DEFUN INPUT-PROCEDURE
(RECORD TIMESTAMP)
(DECLARE (UNSPECIAL RECORD TIMESTAMP))
(IGNORE TIMESTAMP)
($create OBSERVATION (make-observation
TIME (cu:shared-list (FIRST RECORD))
SITE (cu:shared-list (SECOND RECORD))
EMITTER-ID (cu:shared-list (THIRD
RECORD))
LOB (cu:shared-list (FOURTH RECORD))
OBSERVATION-TYPE (cu:shared-list
(FIFTH RECORD))
MODE (cu:shared-list{(SIXTH RECORD))
SIGNAL-QUALITY (cu:shared-list

(SEVENTH RECORD))

REDIRECT-FLAG (cu:shared-list

(EIGHTH RECORD)))

nil (quote NEW-OBSERVATION-READ) (quote INPUT))

(defun elint-initialization ()

($create report-data-level (make-report-data) nil ‘report-node
‘elint-initialization)

(Screate emitter-manager-level (make-emitter-manager) nil

‘emitter-manager-node ‘elint-initialization)

(output-if *debugging-cage* "~&Opening trace file ~A" *output-
trace-file*)

(when *output-trace-file* : [nps]

2-55

(setq *output-trace-stream* (open *output-trace-file* :direction
:output))
(cu:without-clock (print (list :data-rate bb:*domain-ms*)
output-trace-stream®)
(print (list ":circuit-name user:*circuit*)
output-trace-stream®))
(output-if *debugging-cage* "~&Opened trace file ~A"
output-trace-file}))
(when cu:***count-locks***
(setq cu:*count-locks-stream* (open *count-locks-file* :direction
:output)))
(when ***time-trace***
(setq *time-trace-stream* (open *time-trace-file* :direction :
output))))

(defun elint-quit ()
;(print “testing termination-condition” cu:*output-stream?®)
(cu:without-clock (and (cu:shared-read *end-of-input*)
(null (control-events)) :former event list
(or (cu:wait 100) t)
(null (control-events)))))

(defun PRINT-RESULTS

nil

(cu:without-clock (when *output-trace-file*
(prinl "elapsed time in mins. = "

“output-trace-stream?)
(print (quotient (quotient (time-difference (time)
b:*simulation-start-time®*)
60) 60)

output-trace-stream®)
(close *output-trace-stream®)

.Print results of Elint computation
(mapcar (function DESCRIBE-FLAVOR)
(send (send(HYPOTHESIS-STRUCTURE)

:cluster-level) :NODES))
)

(fs:close-all-files)
))

(defun $ALL-sort (change-list-address &aux local)
(unwind-protect
(progn
(cu:shared-lock (locf (control-lock)))
(setf local (cu:shared-read change-list-address))
(cu:shared-write change-list-address nil))
(cu:shared-unlock (locf {control-lock))))
(agenda-sort (cu:cache-shared-list local)))

2-56

(defun Agenda-compare (eventl event2)
(declare (special *agenda®))
(let ((typel (change-type eventl))
(type2 (change-type event2)))
(let ((posl (or (cl:position typel *agenda®) C))
(pos2 (or (cl:position type2 *agenda®) 0)))
(greaterp posl pos2)))

(defun agerda-sort {event-list)
(sort event-list #'(lambda (evl ev2) ;do we need sort-stable here?
(agenda-compare evl ev2))))

Knowledge Systems Laboratory
Report No. KSL-89-43

An Application in Poligon

by
Jean-Christophe Bandini
and
James Rice

Knowledge Systems Laboratory
Stanford University
701 Welch Road
Palo Alto, CA 94304

January 1991

The authors gratefully acknowledge the support of the following funding agencies for this
project; DARPA/RADC, under contract ¥30602-85-C-0012; NASA. under contract num-
ber NCC 2-220: Boeing Computer Services, under contract number W-266875.

2-58

Abstract

This paper describes the design, implementation and performance of ParAble, a problem
solving application built using the Poligon framework, a concurrent blackboard-based pro-
gramming system. ParAble is a system for the diagnosis of faults in particle accelerator
beamlines. The factors that motivate and constrain the design of Poligon applications are
discussed. Experimental results and their interpretation provide an evaluation of the
Poligon system in terms of the performance of this application.

1. Introduction

Concurrent problem-solving is a relatively recent field that has emerged as a result of falling
hardware prices and the consequent burgeoning availability of multiprocessors. With the
availability of concurrent hardware has come the problem of programming these machines.
Multiprocessors have been used for quite a while for very regular, primarily numerical
problems. The work described in this paper was performed within the Advanced
Architecture Project (AAP) of Stanford University's Knowledge System Laboratory [Rice
88b]. The goal of the AAP is to investigate the use of multiprocessors for Al applications
in the hope of achieving substantial speedup due to parallelism. Why this is not a trivial
problem is described in [Rice 88a].

The goal of this sub-project was to study the design and performance of a new application
mounted on Poligon [Rice 86] and [Rice 89}, a concurrent problem-solving framework de-
veloped as part of the AAP. This application was required to be different from those which
had already been studied (real-time radar signal interpretation [Nii 88]). The main issues of
interest were:

+ Performance measurement

Measurement and analysis of speedup

Study of resource allocation

Study of the influence of granularity on system performance

Design: the adequacy of Poligon for a different type of programming problem and
the infiuence of the requirements of concurrent problem solving on the conceptual-
ization of the problem and the knowledge engineering process. Previcus work on
the AAP had already determined that an appropriate decomposition of the problem
domain into suitably parallel terms is a major part of the problem of concurrent
probiem solving.

Although we needed a "new"” application, instead of starting from scratch, it seemed better
to select an existing, serial, application and implement it using Poligon. This approach
would let us draw comparisons between the serial and parallel implementations in term of
design. The application we chose was called ABLE which had previously been developed
by Scott Clearwater and Larry Selig [Selig 87] to help to align and debug particle accelera-
tor beamlines.

The experiments described in this paper were carried out on the CARE simulator [Delagi
86a], which can be used to construct simulated multiprocessors of various shapes and sizes
with a set of instruments to analyze the run-time behavior.

1.1. The Target Problem Solving Framework: Poligon

The Poligon framework is a skeletal blackboard-based concurrent problem solving system.
Unlike conventional blackboard systems, to make efficient use of the multiprocessor hard-
ware for which Poligon was designed, there is no centralized control.

The nodes of the blackboard can be viewed as active agents with attached daemon-like rules
triggered by changes made to the blackboard nodes. When a node is created it is installed
on a processor-memory pair (i.e. a processing element of the CARE machine) and rule in-
vocation may use other processor-memory pairs (see Figure 1). The allocation of black-
board nodes to processors is usually handled by the Poligon framework, though it can be
influenced by the application program.

Poligon is a high level approach to parallel programming and a lot of details are taken care
of by the system, such as node object instantiation, rule invocation and the creation and de-
futuring of futures. By default, Poligon tries to parallelize as much as possible in the
user's application, but the programmer can place restrictions on this parallelization when
more control is required.

Rules

Figure 1. Poligon blackboard nodes and rule invocation. Updates to
slots in Poligon nodes cause the concurrent activation of rules associated
with those slots. These rules in turn go on to cause updates to slots in other
nodes. This results in the implicit creation of pipelines.

2. The Application

The ABLE application was developed to solve the problem of misaligned or defective
beamlines in particle accelerators. Beamlines are composed of a source of particles and a
target connected by a pipe (see Figure 2). The particles are guided through the pipe with
magnets which can focus, defocus and bend the beam very much like lenses and prisms af-
fect rays of light. Monitors distributed along the beamline provide data to tune the mag-

2-60

nets. The tuning operation is done on-site with the beam on. This mode of operation en-
tails high costs (often of the order of $0.25M per day) and requires considerable expertise
and can often still take of the order of months to complete. The goal of the ABLE project
was to automate the process of finding faulty magnets and monitors by using expertise, an
analytical model and simulation.

Source
Target

Figure 2. A Beamline. In particle accelerator beamlines, magnets are
used to serve functions analogous to focussing, defocussing and prismatic

components in an optical system. The source emits sub-atomic particles

whose behavior is ideally to be measured by detectors sited at the target.
The path of the beam, even in the absence of magnets is roughly sinusoidal

because of quantum mechanical effects.

In order to control the beam as it travels along the beamline, monitors (detectors) are placed
in the beam pif. ., which can detect the proximity of the beam. The output of these monitors
can be used to control the strengths (and hence "refractive indices") of the magnets and thus
control the beam. Unfortunately, physical limits prevent beamline designers from putting
monitors in all the ideal places. This is often caused by the fact that magnets are physically
so close together that there is no room for a monitor. Thus, the beamnline debugging pro-
cess must reason from incomplete information (see Figure 3).

No Monitor : Monitor

Figure 3. Monitors are placed along the beamline where feasible.
2.1. Serial Problem Soiving

The method used to solve the beamline alignment probiem at most existing particle accelera-
tors can hardly be called anything other than mere knob-twiddling. Those trying to com-
mission the beamline tweak the strengths of the magnets in the hope of achieving better
alignment. This can often take many months because the effect of adjusting a particular
magnet's strength can be strongly counter-intuitive. This counter-intuitivity can be due to
many number of factors. For example, the effect of a change to a particular magnet's be-
havior is often not visible until the fractional change in beam trajectory it causes has been
integrated down a substantial portion of the beamline. What is more, because sometimes
the beamline is physically incorrect, either because someone bumps a truck into a magnet,
deforming or moving it, or because magnets and monitors can easily be wired up with their
intended polarity reversed, those commissioning the beam can exhaust vast resources in as-
suming that the problem can even be solved by parameter adjustment.

In response to these primitive debugging methods the ABLE system was designed. The
serial ABLE problem solving method used numerical simulations and expert knowledge to

find the beamline error as quickly as possible. The numerical simulations provided two
kind of results:

A Monitor
Source)
Target
Relaunch point
and trajectory
Figure 4. The simulated beam can be relaunched from any point in the

beam. Ifit is relaunched with a trajectory equal to that measured from the
real beam at the specified relaunch point then a faultless beamline would re-
sult in a perfect match berween the trajectories of the simulated and real
beams downstream of the relaunch point.

» Relaunching: the analytical model of the beam can be started at any point in the
beamline with the beam being started with a known trajectory (see Figure 4). This
allows the simulation of any segment of the beamline urder controlled conditions.
Because the real-world beam's trajectory can be determined by the monitors in the
beamline, a simulated relaunch can be made from the position of a menitor with a
trajectory equal to the measured trajectory. Comparison of the real beam with its
simulated beam's path downstream of the relaunch point allows the system to de-
duce the approximate location of errors (see Figure 5). The exact location cannot
easily be found because some errors do not show up until a long way
"downstream” and also because the number of monitors is not as great as would be
ideal because of physical limitation in the construction of the beamline.

Monitor

Source

Target
Relaunch point

and trajectory
Figure 5. In this case the simulated beam rapidly diverges from the real
beam'’s measured path (gray). This indicates that a fault is likely near the
monitor from which the relaunch was made.

» Magnet Fitting: Once the approximate location of an error has been found. a lincar
optimization process can be performed, which modifies the parameters of the pos-
sibly erroneous magnets around the suspected error point until a good fit is ob-
served between the simulated and the actual beam paths.

The serial problem solving method relaunches the simulated beam from the beginning of
the beamiine. A set of rules is used to analyze the differences betw -en the simulated and
real beams and also to find at which moritor the error is located. This monitor is called the
"bad-monitor"!. A range of monitors downstream of the "bad monitor” constitutes a re-
gion of the beamline which is supposedly error-free and which is called a "good-region”.
The beam is then relaunched from the end of the good-region to find the next bad-monitor
and the process proceeds to the end of the beamlinc.

INote: This docs notindicate that the moatter 1~ broken, though 1t may be. it simply identifics o possible,
approximate location for the crror.

The magnets in the vicinity between good-regions (i.e. around a bad-monitor) are then
checked to see if, by varying their parameters_thcy can account for the observed discrep-
ancy between real beam daia and the simulated beam path. In the best of all possible
worlds the beam alignment problem could be solved by running an op:imization provess
over all of the parameters of all of the muagnets in the beamline simultaneousiy.
Unfortunately, this is comb:natonally explosive. so the goal of the ABLE system was to
localize the arca of the problem so that the computational task of performing thesc lincar
optimizations was tractable.

The serial implementation of ABLE runs using KEE™and a large body of FORTRAN code
to perform the simulation of the beam and the above mentioned linear optimization.> ABLE
was tested on real data from the Stanford Linear Accelerator (SLAC) and was shown to be
able to find problems in only a few minutes that would have required days or possibly
weeks to find by traditional means.

2.2. Parallel Problem Solving

ParAbie is a parallel implementation of an ABLE-like system. In many senses ParAble is
an artificial problem since the commissioning of beamlines is something that takes place
over months, and it is really not necessary to gain any speedup over the existing ABLE
implementation. However, recent developments in particle accelerators, particularly those
spurred by the Strategic Defense Initiative, has resulted in designs for accelerators that are
much more sophisticated and in need of much more automation so as to control and debug
them. It is by no means ridiculous to think in terms of accelerators that would require con-
tinuous real-time monitoring and debugging so as to keep them running at peak perfor-
mance.

Nevertheless, independent of the requirement for a real-world parallel implementation of
ABLE. our own goals were 10 investigate the process of concurre.1t problem solving both
from the human and the machine’s point of view and in this respect the ParAble application
was thoroughly instructive. The design and problem solving sirategies in the seri::l and
parallel systems are widely different. This section provides a high-level description of the
design of the ParAble application.

2.2.1. Goals

The goal of the new design for a parallei ABLE was to find a reformulation of the pronlem
solving method which would make efficient use of the underlying parallel architecture To
this end it was our goal that the expert, Scott Clearwater, an accelerator paysicist, should
ry to reformulate the problem solving method so that:

+ The problem was solved by solving independent subproblems, so that the compu-
tation could be split between several processors without requiring synchronization
and communication.

= The problem solving method exploited parallelism whenever possible.

» The need for control in the problem solving miethod was reduced to a minimum.

The motivation for these goals was the efficient use of parallel hardware with minimal syn-
chronization and communication.

ZKEE is a rademark of IntelliCorp Inc.

2.2.2. Problem Solving

The problem solving method used in ParAble differs from that used in the serial ABLE
implementatior in a number of interesting ways. In the seriai ABLE implementation, a
single relaunch of the simulated heam is made from the beginning of the beamlire to locate
the monitor where the actual beain and the simulated, relaunched beam diverge, this moni-
tor is termed a "bad monitor”. When asked to think of how he would ideally solve the
problem, our expert came to the conclusion that relaunching the beam only once to find the
likely location of the error was not at all the best way to think about the problem. This was
because using only one simulated relaunch of the beam made it very difficult to diagnose
probiems due to multiple error- in the beamline. In the case of ParAble, therefore, because
the Poligon programming r del assumes the availability of substantial computing re-
sources, multiple, simultaneous simulated relaunches were possible, one from ¢ach moni-
tor in the beamline, i.e. one relaunch for each available beam trajectory data point. Having
multiple relaunches also improved the reliability of the system's conclusions and succeeded
in getting correct diagnoses in some cases for which a single relaunch, such as that used by
ABLE, would have re-1lted in a gross error concerning the location of the bad monitor.

In the serial implementation, evea when relaunching is performed as part of the magnet pa-
rameter linear optimization, the simulated beam is analyzed only downstream of the re-
launch point. This is because the expert was thinking originally of how he would address
the problem serially. When dGebugging a beamline serially it makes sense to work down-
stream, since as you go you can be sure to what extent errors are influencing the propaga-
tion of the beam. This mind-set was also largely motivated by the fact that the real beam
travels from cne end of the beamline to the other, you cannot make the beam travel back-
wards in time. However, when the expert viewed the problem as one in which problem
solving activity could occur concurrently he mede the *iscovery that the real goal was to
separate the beam into goou ard bad regions. [idic ¢ matter in which order this hap-
pened. What is more, because the beamline sit.,ulator simul=tes the magnets in terms of
their transfer function by means of matrix operations, tne bearu is simulated as a mathemat-
ical abstraction, not as a discrete simulation of the propagation o individual particles.
Thus, the simulation can be run "backwards”, i.e. it proved to be entirely legitimate to cor-
relate the relaunchcd beam with *he actual beam both upsaream and downstream of the re-
launch point. This means that a relaunch from any given monitor position can suggest the
presence o1 an error, or lack thereof, either upstream, or downsteam of the relaunch moni-
tor, or botn. This reconceptualizc*'on of the problem allowed a totally different problem
solving method from the serial ABLE implementation. Rather than relying on only one re-
launct to find ar error, the system w3 nbie to relaunch the beam from every monitor and
use the resul's v analyzing cach claun.b in « voting scheme to pick the most likely
cause(s) for the misalignument.

Thus, the paraiiel problem sciving method is orpanized in two major steps. First, find the
"bad region(s)” along tae beam. As mentioned above, a bad region is a segment of the
beamline vetween sorre sequence of monitors, which presumably has a faulty magnet.
Since several rlsunches are performed, their conciusions need to be tategrated to find
where the had segions are. This is done by a voting scheme. The second rhase in the
~roblem solvir 7 activity required that for exch bad region the system we should find the
bad magnet (the magnct causing the actual beam misalignment). Once a bad region is
known t¢ have a faulty magnet, linear opumization runs can be performed for each of the
magnets in the bad region simultaneously to tind the one at fault.

2.2.3. Sources of Parallelism

From a problem solving point of view, thers are only really three sources of parallelism.

Poligon is designed to be able to exploit these on distributed metnory multiprocessors.

» Pipeline parallelism. This is the form of parallelism seen on industrial assembly
lines. The amount of speedup in a perfectly balanced pipe is proportional to the
number of stages in the pipe. If the ParAble application were to have been used in a
continuous, real-time manner, then we could have hoped for pipeline parallelism as
a result of pumping new data into the system while it was still working on old data.
We did not, however, investigate this area, since real-time systems was the primary
research area of other parts of the Advanced Architec -res Project.

* Replication. This is the parallelism due to having multiple processors all doing
similar things to different data. This form of parallelism is more like that seen in a
car repair shop, where there is likely to be one mechanic working on each car.
More speedup for the business overall could be achieved by adding more mechanics
and getting more cars to work on. This is the form of parallelism most appropriate
to the ParAble application. Indeed, the presence of multiple magnets and monitors
in the beamline, each of which could be considered in the problem solving process
indicates that one might hope for speedup that was preportional to some function of
the number of magnets and monitors.

» Decomposition into separate sub-problems. Some might view this aspect as being
no different from the two previous ones, that is, a pipeline represents a decomposx-
tion of the problem too. We include this since there are often qualitatively different
things that have to be done, which can nevertheless be done in parallel. This could
be viewed as replication at some level of abstraction, but such a view does not help
the cognitive process of problem decomposition. For example, when building a
house, it is possible to install the plumbing at the same time that it is being wired
and roofed. Clearly, each of these activities is being Jone by a similar "processor”,
but it is not useful to think of them as being simply replicated, since at the house
building level of abstraction they are still qualitatively different operations. We can
think of this form of parallelism as "Knowledge Parallelism”

The parallelism that results from replic ation is often referred to as "Data Parallelism”, since
it is the form of parallelism that is a function of the structure of the data in the problem, not
the proce:sing that has to be done on the data. Adding more data typically adds more po-
tential for parallelism. The main source of parallelism in ParAble is data parallelism.

* During the finding of the bad region(s) multiple relaur- ies must be run. These re-
launches can be run in parallel and they do not require any synchronization.

* Once the bad region(s) have been found, multiple magnet fit simulations (linear op-
timizations) must be run. These optimizations can also be run in parallel.

» Overlapping between the two phases is possible (pipelining). Once a bad region
has been found the finding of the faulty magnet is an independent subproblem
which can be solved concurrently with relaunches or other bad region finding sub-
problems.

Clearly, the numeric simulations and optimizations may well also offer considerable oppor-
tunities for parallelization. However, our project was more interested in the process of
concurrent symbolic programming, than numeric programming. Thus, we chose to view
these activities as monolithic (black boxes). We were, however, able to adjust the simu-
lated time taken to execute the simulation. This was possible for our experiments by exe-
cuting the simulation for every possible combination of parameters and measuring the run-
time of each such execution. Then, when ParAble wanted to execute a simulation it had, in
fact, only to look the result up in a table and charge the appropriate amount of time-to the

2-65

CARE simulator. This strategy allowed us to investigate the impact of the speed of the
beamline simulations on the overall performance of ParAble.

2.2.4. Design of ParAble for Poligon

Poligon's programming model gives the user a view of the world that is separated into ob-
jects that belong to classes. These classes represent the na.ural partitions in the solution
space, often referred to by blackboard systems as "levels” because they are often used to
represent distinct levels of abstraction in the solution space. Knowledge in the form of
pattern/action rules is associated with these classes and hence with their instances. The de-
sign of ParAble uses Poligon nodes to represent and hold the state of the beamline objects
and the state of the evolving solution. More specifically, the classes of Poligon nodes used
in this application were as follows (see also Figure 6).
» Magnet, instances of which hold the state of the real magnets of the beamline.
» Monitor, instances of which hold the state of the real monitors.
» Segment, instances of which hold the state of the region of the beamline delimited
by two consecutive monitors.
« Experiment, of which there is only one instance which retains the overall state of
the solution and which is used for some global synchronization and initialization.
» Bad regicn, whose instances represents a sequence of monitors that contain a mag-
net error.

Experiment
R -

egment ‘egmen egmen

| {
Monitor Magnet Monitor Magnet I'Magnct‘l Monitor Magnet

—
Bad Region

Beamline

Figure 6. The configuration of ParAble’s blackboard.
2.2.5. The Application in Operation

ParAble's design was strongly organized so as to exploit the sources of parallelism de-
scribed above. Its behavior fell into two primary components, the finding of the bad re-
gion(s), and the finding of the bad magnet within each of these regions.

To find the bad regions, a simulation was relaunched in parallel for each monitor. The in-
tegration of the simulation results used a voting scheme, whose goal was to reduce any
synchronization overhead to a minimum. The result of each relaunch was used in a dis-
tributed fashion: a vote was sent, by the monitor that performed the simulation, to each of
the monitors which were suspected as being bad as the result of the simulation. Each
monitor cnllected the votes cast for it and was empowered to make a decision on whether to
create a bad region or not on the basis of the votes cast. A simple comparison of the sum
of the votes with a threshold proved to be enough, but further refinements may be possible.
This scheme avoided any bottleneck that might have been caused if a central object had

2-66

been used to collect all the results of the simulations and to make a final decision.
Furthermore, this design allowed the finding of bad regions before the completion of all the
relaunches by all of the monitors, i.e. there was no synchronization necessary in order to
continue with the problem solving. Nevertheless, some control was necessary after the
decision to create a bad region was made to avoid creating overlapping bad regions. This
would have entailed redundant computation.

To find the bad magnet within a bad region, ParAble started by creating a Bad Region ob-
ject. This bad region was then responsible for solving the subproblem of finding the bad
magnet inside the region of the beamline that it denoted. Linear optimizations were run in
parallel for each magnet in the bad region so as to try to find a set of magnet parameters that
would best fit the behavior of the real beam. All the results of these optimization operations
had to be collected before making a choice concerning the bad magnet.

3. Experiments on ParAble

Numerous experiments were performed on Poligon and ParAble, some of which we will
describe here. As was typically the case in experiments on the AAP, our primary concern
was for speedup. We were, however, also interested in using the experiments to deliver
some insights concerning the generality of Poligon and the probable limits of its perfor-
mance. Thus, the main goals of these experiments were:
* Measurement of speedup.
+ Study of any resource allocation problems.
+ Study of the performance of ParAble when encountering multiple errors as opposed
to only one error in the beamline. Note, the serial ABLE implementation was not
~ble to handle multiple errors satisfactorally at all.
+ Study of the granularity of Poligon and the application.
+ Validation of previous experimental results.

3.1. Experimental Parameters

The design of the program was kept constant for all experiments. The parameters that were

changed for the experiments were:

+ The data set: a variety of data sets were available. These fell into two broad cate-
gories: those with single errors in the beamline and those with double errors.

* The numerical simulation timing scale factor: Simulations were involved whenever
a relaunch was made or whenever an optimization run was made. A scale factor
was applied to the true, wall-clock time of these simulations in order to study the
behavior of the system with respect to computational grain sizes.

» The number of processors: These ranged between one and 128 in powers of two.

3.2. Experiment Measurements

Tht;é:xperiments measured the execution time of the application. More precisely we mea-
sured:
+ Initialization tir.e: the time to set up the Poligon objects.
+ Problem solving the time to solve the problem, (i.e. total time minus the ini-
tialization time). .. . ume was broken up into two main quantities:
. the time to find the bad-region
» the time to find the bad-magnet inside the bad-region.

For a finer grained analysis we also use a time stamped trace of the executions. In the fol-
lowing experiments we did not pay much attention to the initialization time. This was be-

2-67

cause we anticipate that if a system such as ParAble were to be used in the real world it
would be used in a real-time manner. In this case, initialization is payed for only once at
load time and is therefore not relevant to normal system operation. In these experiments,
the initialization time was not trivial because of the time taken to create the objects on the
blackboard and to connect them up in a manner suitable to the application. This involved a
certain amount of synchronization.

3.3. Theoretical Analysis

The first question to answer is: what is the available parallelism of the application and what
is the maxiinum speedup we can expect? As mentioned in the description of the program
design, the two main sources of parallelism are:
» Multiple relaunch simulations can be carried out in parallel.
* Once a bad region has been found, the computation of the linear optimization to find

the bad magnet can be performed in parallel.

Let us assume we have infinite resources, infinite Poligon system speed and instantaneous
communications. The execution time of the relaunch simulations to find the bad magnets
all have about the same duration. The relaunch time Trejaunch = 2 seconds using a simula-
tion scale factor SF=1, except for one which takes about 4 seconds. Since 17 relaunches
are typically performed, the theoretical speedup for the relaunches is:

(16T relaunch + 2T relaunch))
2Trclaunch

Speeduprelaunch =

But the speedup for finding the bad region is different because bad region finding does not
require waiting for the results of all the relaunch simulations, since a subset may be enough
to go above the vote threshold. In particular, the long simulation (2Trelaunch) may not be
necessary, thus, in general:

16T, + 2Teel
Speedupbad-region-finding %&3—@@@—)

For the magnet optimization simulations, the bad region has 8 magnets and the average
simulation time is Top = 2.5 seconds but one of the simulation times is 4.1 seconds (=
1.65Topt). Thus, the maxxmum speedup for the magnet optimization simulation is:

TTopt 1.65T
Speedupmagner-opt = (olp t65T0pl opt) = 5.25

Thus for the overall problem-solving sueedup we have:

(16T claunch + 2Trelaunch + 7Topt +1.95Topy)
(Trctaunch + 1.65Top)

Speedupioral = =94

In summary:

Speedup source Maximum Theoretical Speedup

Bad region finding 18.0
Bad magnet finding 5.25
Total 9.4

3.4. Measurement of Speedup

The purpose of this experiment was to have a coarse approximation of the speedup and to
have a basis 10 analyze the performance. This experiment was run with a single error data
set. The scaling of the times for the simulations used the scale factors; 0, 1/1000, 1/100,
1/10 and 1, relative to the actual run time of the beamline simulation when executed in
FORTRAN on a Lisp Machine. Thus, one data point represents what w~ -1d happen if the
simulations ran infinitely fast (0), and another data point refers to the siz.« 1ti.n running in
one tenth (1/10) of the actual measured time. The reason why all of our measurements
used scale factor less than or equal to one was that we knew that the simulations ran at at
least this speed on a real machine. The simulator could probably have been made faster by
better programming, faster hardware or by the use of parallelism. There was, therefore, no
reason ever to suspect that this code would run ~lower than its measured performance.
This experiment was performed on eight different sized processor networks comprising re-
spectively, 1, 2, 4, 8, 16, 32, 64 and 128 processors.

The results from these experiments are shown in Graphs 1-5.

i F, =
10 7
] =& Init Speedup
-~ Total Speedup
8 -& Comp Speedup
a 6 - =#
3 —e
°
]
2 4
n
————n
2 -
0 | L] T L v 1
0 32 64 96 128
Processors
Graph 1. Speedup of the ParAble application measured with no time at

all spent in the beamline simulator.

2-69

imulati] =1/1

10 1
<& Init Speedup
8 =0~ Total Speedup
=& Comp Speedup
2 6 : —4a
2 —e
<
3 '
% 4 1
—8
2-
0 r T — v 1
0 32 64 96 128

Processors

Graph 2. Speedup of the ParAble application measured with the time
spent in the beamline simulator being only 1/1000 of the real-world time
needed for the simulations.

imulati Factor =
10 1
<& Init Speedup
-®- Total Speedup
8 & Comp Speedup
a 6 ey
3] N
2
> 4
2 -
O ¥ ¥ A Ll l
0 32 64 96 128
Processors
Graph 3. Speedup of the ParAble application measured with the time

spent in the beamline simulator being only 1/100 of the real-world time
needed for the simulations.

2
~J
o

Speedup

4 Init Speedup
o~ Total Speedup

=_..Comp-Speedup

1

0 32 64 96 128
Processors

Graph4. Speedup of the ParAble application measured with the time
spent in the beamline simulator being only 1/10 of the real-world time
needed for the simulations.

10 7
_ 3

<& Init Speedup
& Total Speedup
& Comp Speedup

Speedup

L] L] L] L 1
0 32 64 96 128
Processors

Graph 5. Speedup of the ParAble application measured with the time
spent in the beamline simulator being equal to the real-world time needed for
the simulations.

3.4.1. Interpretation

Each of the Graphs 1-5 have three curves. The curve marked "Init Speedup” is the
speedup curve resulting only from the timing of the system’s initialization. As can be eas-

2-71

ily seen from all of the graphs, the initialization of the application had a certain amount of
concurrency, which was independent of the beamline simulation scale factor because, of
course, there was no need to run the beamline simulator during the application's initializa-
tion process. The initialization procedure consistently delivered a speedup of about six.
This is consistent with other results derived on the AAP, which have shown that speedup
of the order of ten is relatively easy to achieve. Not much effort was spent in making the
initialization more effectively concurrent, indeed, it was only made parallel at all because
this is the natural way to program in Poligon.

The second curve is marked "Total Speedup” This indicates the speedup resulting from the
whole of the application's execution, including initialization. We we mentioned above, the
initialization time was not deemed to be as interesting as the problem solving aspects of the
application, so this curve is shown mostly to give a feel of the effect of composing the two
different components of the application.

The second, and most significant, curve on these graphs is labeled "Comp Speedup”. This
denotes the speedup delivered during the actual computation of the application. The
speedup varied from a peak of about three for the scale factor (SF)=0 case to about ten in
the SF=1 case. The speedup in the latter case was almost entirely due to the data paral-
lelism inherent in the application. This can be seen most readily by examining Graph 6.

imylati re=

10000
~+i Comp Time
1} Rcv-Vote
-®: Magnet
~9-| Stop
g 1000
= —t
— —=
100 +—— v . v .
0 32 64 96 128
Processors
Graph 6. Execution times measured for different aspects of the

ParAble application with simulation scale factor = 1.

In Graph 6, we see the execution times of different components of the ParAble application
plotted against the size of the processor network used. The Y axis has a logarithmic scale
to enhance the detail. One unit on the Y axis is equivalent to 100 CARE machine simulated
microseconds. On this graph, we see the computation time, which is the same time used to
compute the computation component speedup in Graphs 1-5, and the three components of
the simulation that contribute most to it (they account for 99.5% of the time, at SF=1).
These components are, respectively, the time taken to receive enough votes to be able to
identify a bad region, the time taken to run the linear optimization process on the magnets in
the bad region and the time taken to wait for the conclusion of the optimizations and to fin-
ish up. It turns out that the speedup in the vote receiving phase was about 18. This was

2.72

simply because of the number of monitors in the whole beamline (see theoretical discus-
sion). The speedups derived in the other components were similarly a function of physical
limits imposed by the structure of the beamline, not by the problem. The aggregate maxi-
mum speedup of about ten is simply a function of the fact that part of the time is spentin a
highly parallel component, the bad region finding, and part is spent in the bad magnet
finding component, which is less able to exploit parallelism because there are typically not
many magnets in a bad region.

Thus, the speedup of the system, when not limited by the granularity of Poligon itself is

determined entirely by the physical characteristics of the beamline. If we were torunona
larger, more complex beamline then we might reasonably expect to achieve more speedup.

Simylation Scale Factor =0

5
4 S
-& { Relaunch-Req
~¥- | Rev-Vote
3 =+ 1 Create-Reg
g -®- | Magnet
E 2 =
! —
0-1 v ¥ v 1 Y Y 1
32 64 96 128
£rocessors
Graph7. The time taken to execute certain portions of the ParAble

application for beamline simulation SF=0, plotted against the number of
processors in the network.

If we now consider the diametrically opposite case, that of SF=0, we can see also how
speedup is limited in the fine-grain€d case by the granularity of Poligon's rule execution
mechanism. In this case, we see plots for the times taken by the vote receiving part, the
magnet optimization and the stopping point as before, but in this case we also show two
other typical times, one for the time taken to make the request to do a relaunch and one for
the time taken to create a bad region. These times are entirely typical of those of other
timed components in the ParAble system. From this we can conclude that, even if we pay
no price for the beamline simulation, we still pay a price of about one millisecond for
Poligon operations, such as rule invocation. This is consistent with the predictions and
measurements made in [Nii 88] regarding the granularity of Poligon's rule invocation
mechanism. We can therefore conclude from this that it is likely to be fruitless to break up
a Poligon application into grains of less than one millisecond because the framework's
overhead will result in an overall decrease in perfformance. The Amdahl limit for this appli-
cation is therefore met early when the scale factor is set to zero, because there is a certain
amount of processing that must be done serially, whatever. A discussion of the implemen-
tation of Poligon and of means by which this one millisecond overhead could be substan-
tially reduced is given in [Rice 89]. Note that although we present here the experimental

results from only one data set, we in fact ran ParAble on a number of data sets and consis-
tently achieved similar results.

3.4.2. Resource allocation

When we first ran the above experiment, we did not achieve the speedup reported.
Furthermore the speedup plots that we received showed significant irregularities and we
found the results not to be repeatable. We ran a number of additional experiments to de-
termine why we were getting such irregular behavior from the system. Analysis of these
experimental data revealed that the cause was Poligon's default random site allocation for
processes. The Poligon model assumes that, by default, the computations being executed
by the application are likely all to be approximately of the same duration and so, in the ab-
sence of a user specified resource allocation strategy, instantiates new blackboard nodes
and executes rules concurrently on randomly selected processors. The rationale for this is
that the "law of large numbers” will smooth things out in a large application.
Unfortunately, the ParAble application is not like this, especially when the simulation scale
factor approaches 1. In this case, the large computation grains are spawned and with
Poligon’s default allocation strategy, an analysis of the probability of a "collision" between
large computational grains showed that in almost every run we would expect to have two
long operations assigned to the same processor. The result of this was to double the appar-
ent length of each of these components, thus increasing the serialization in the system and
reducing parallelism. What we needed was a different resource allocation method.

What we chose to do was to divide the sites up in two equal sized groups, one group was
dedicated to run Poligon rules that caused beamline simulations and the other group was
used for everything else (blackboard nodes and other rule activation contexts). The alloca-
tion scheme we chose was round robin for the sites dedicated to the beamline simulations
and random for the other sites.

For large beamline simulation granularity (SF=1), the following table shows that the

) ups are very close to the theoretical ones we computed.
Speedup source Theoretical Speedup Measured Speedup
(128 processors)
Bad region finding 18.0 17.5
Bad magnet finding 5.25 5.2
Total 9.4 9.5

Another important point to note is that, as can be seen in Graph 5, measured speedup lev-
eled off above 32 processors. In other words, 32 processors is enough to reach the theo-
retical maximum speedup, when a careful resource allocation method is used.

3.5. Multiple Errors

The previous experiments were carried out with single error data set. In this experiment,
we used a double-error data set. The experiment was in all other respects, basically the
same as the previous experiment .

With multiple errors, a slight improvement in speedup could be expected for the magnet
finding sub-task because with two regions, a larger number of magnet optimizations need

2-74

to be computed and thus the speedup is potentially larger. On the other hand, having two
bad-regions means that each of the bad-monitors receives a smaller number of votes.
Thus, the bad-region finding may take longer (although the total amount of relaunching is
exactly the same as with a single error problem).

For the large granularity case (SF=1), the following table gives the results and a compari-
son with the results from the single error experiments.

Measured Speedup Single Error Double Error
(128 processors)

Bad region finding 17.5 15.85
Bad magnet finding 5.2 3.75
Total 9.5 10.27

As can be seen easily from the above table, no significant change in speedup was observed.
However, this belies the fact that ParAble was solving a problem that was twice as hard
(and which the serial ABLE couldn't have solved at all). Thus, in some senses an extra
speedup of a factor of two was delivered.

4. Discussion
We learned a great deal about using Poligon during the implementation of ParAble.
4.1. What is missing

Although the following features are available in Poligon by using programming tricks, it
may be useful to integrate them in Poligon, or Poligon like architectures, for ease of use
and eventually better performance:

» Rule locking, mutual exclusion between a set of rules. Other applications work in
Poligon not described here has revealed that rule locking is sometimes necessary to
enforce consistency between fields of an object.

* Rule on/off. In some cases it appears that it would be useful to have the ability to
switch on/off a set of rules attached to a node. For instance, if some rules should
become inapplicable after some event happens, this feature could be used.
Poiigon’s expectation mechanism partially allows this sort of behavior, but not as
first class behavior.

* Resource allocation. It would be useful if Poligon gave more support for control-
ling the mapping of objects and rule invocation contexts onto processors.

4.2. Programming Hints

Numerous lessons were learned about the programming process in Poligon itself. Here,
we enumerate some of the programming tips we learned while implementing the ParAble
application.

» The high level design should be done with two important ideas in mind. First, con-
trol should be reduced as much as possible because control entails synchronization,
atomicity and communication overhead. Second, the blackboard, when viewed
globally, has many transient inconsistencies, even in a well written application.
‘rne design of applications should t2ke this fact into account.

+ We found it useful to think of the nodes as objects and of the slots updates as asyn-
chronous messages. This view of a Poligon program actually corresponds to the
underlying implementation. It also avoids being misled by the usual assumptions
we make when we deal with slot updates in a uniprocessor implementation of a
frame system.

» The programmer should keep in mind the non-deterministic nature of the system.

» The Poligon system tries to parallelize as much as it possibly can by default. This
characteristic implies that a lot of care should be taken to ensure data consistency
when it is necessary, though Poligon's "smart slot” mechanism is helpful with this
problem in general.

5. Conclusion

In this paper we described ParAble, an application program written to run on the Poligon
concurrent blackboard architecture. ParAble is a concurrent version of ABLE, an expert
system for the diagnosis of particle accelerator beamlines.

This project has shown that the Poligon framework can be effectively used for implement-
ing problem solving systems other than real-time signal interpretation systems, such as
Elint [Nii 88]. Speedup of the order of 10 could be achieved with careful resource alloca-
tion, further speedup being likely with a larger problem domain.

A number of experiments that were performed on ParAble were described and their results
enumerated. These experiments highlight the significance of rule granularity and identify
resource allocation as a crucial aspect of application design, particularly when computation
granularity is heterogeneous.

6. Bibliography

[Aiello 86] Nelleke Aiello. User-Directed Control of Parallelism: The Cage
System. Technical Report KSL-86-31, Knowledge Systems Labo-

ratory, Computer Science Department, Stanford University, April
1986.

[Delagi 86a] Bruce Delagi. CARE Users Manual. Technical Report KSL-86-36,
Knowledge Systemns Laboratory, Computer Science Department,
Stanford University, 1986.

[Delagi 86b}] Bruce A Delagi, Nakul P. Saraiya, Gregory T. Byrd. LAMINA:
CARE Applications Interface. Technical Report KSL-86-76,
Knowledge Systems Laboratory, Computer Science Department,
Stanford University, 1986.

[Delagi 88]) Bruce A. Delagi and Nakul P. Saraiya. ELINT in LAMINA:
Application of a Concurrent Object Language. Technical Repont
KSL.-88-33, Heuristic Programming Project. Computer Science
Department, Stanford University, 1988.

[Engelmore 88] Robert Engelmore and Tony Morgan (eds.) Blackboard Systems.
Addison-Wesley Publishing Company Inc.. Menlo Park 1988.

[Ensor 85]

[Gabriel 84]

[Lesser 83}

[Nii 79]

[Nii 86]

[Nii 88]

{Rice 86}

[Rice 88al

[Rice §8bj}

[Rice 89]

[Selig 87)

J. Robert Ensor and John D. Gabbe. Transactional Blackboards.
Procecdings of the 9th Intemational Joint Conference on Artificial
Intelligence: 340-344, 1985.

Richard P. Gabriel, and John McCarthy. Queue-based Multi-pro-
cessing Lisp. Proceedings of the ACM Symposiurm on Lisp and
Functional Programming: 25-44, August, 1984

Victor R. Lesser and Daniel D. Corkill. Tlie Distributed Vehicle
Monitoring Testbed: A Tools for the Investigation of Distributed
Problem Solving Networks. The Al Magazine, Fall:15-33, 1983.

H. Penny Nii and Nelleke Aiello. AGE: A Knowledge-based Pro-
gram for Building Knowledge-based Programs. Proceedings of the
6th Intemational Joint Conference on Artificial Intelligence: 645-
655, 1979. .

H. Penny Nii. Blackboard Systems. Technical Report KSL-86-18,
Knowledge Systems Laboratory, Computer Science Department,
Stanford University. April 1986. Also in Al Magazine, vol. 7-2 and
vol. 7-3, 1986.

H. Penny Nii, Nelleke Aiello and James Rice. Experiments on
Cage and Poligon: Measuring the Performance of Parallel
Blackboard Systems. Technical Report KSL-88-66, Knowledge
Systems Laboratory, Computer Science Department, Stanford
University, October 1988.

James Rice. The Poligon User's Manual. Knowledge Systems
Laboratory, Computer Science Departmert, Stznford University,
1986.

James Rice. Problems with Problem-Solving in Parallel: The
Poligon System. Technical Report KSL-8§8-04, Knowledge Sys-
tems Laboratory, Computer Science Depaniment, Stanford Uni-
versity, January 1988. Also in Proceedings of Third International
Conference on Supercomputing, May 1988.

James Rice. The Advanced Architectures Project. Technical Report
KSL-88-71, Knowledge Systems Laboratory, Computer Science
Department, Stanford University, January 1988.

James Rice. The Design of a High Performance. Concurrent
Problem Solving System...and many Lessons Learned on the Way.
Technical Report STAN-CS-89-1294 (KSL-89-37), Heuristic
Programming Project, Computer Science Department. Stanford Uni-
versity, November 1989.

.2wrence ;. Selig. An Expert System using Numerical Simulation
241 Optimization to find Particle Beamiine Errors. Technical Report
3.-87-36. Heuristic Programming Project, Computer Science De-
pe-iment, Stanford University, 1987.

Knowled&e Systems Laboratory October 1986

Report No. KSL %6-99

An Experiment in Knowledge-based Signal
Understanding Using Parallel Architectures

by
Harold D. Brown, Eric Schoen, and Bruce A. Delagi

KNOWLEDGE SYZTEMS LABORATORY
Computer Science Department
Stanford University
Stanford, California 94305

This research was supporied by DARPA Contrac: F30602-&5-C-0012,
NASA Ames Contrac: NCC 2-220-S1, and Boeing Contr-act vwW266875.
Eric Schoen was supported by a fellowship from NL [1dustries.
Bruce Delagi is currently a visiting research scientist a.
Stanford from Digital Equipment Corporation.

: .8

Abstract

This report documents an experiment investigating the potential of a parallel computing
architecture to enhance the performance of 2 knowledge-based signal understanding system.
The experiment consisted of implementing and evaluating an application encoded in a parallel

programming extension of Lisp and executing on a simulated multiprocessor system.

The choosen application for the experiment was a knowledge-based system for interprefing
pre-processed, passively acquired radar emissions from aircra’t. The application aas
implemented in an experimental concurrent, asynchronous object-oriented framework. Tis
framework, in turn, relied on the services provided by the underlying bardware system. he
hardware system for the experiment was a simulation of various sized grids of processors with

inter-processor communication via message-passing,

The experiment investigated the effects oi' various high-level control strategies on the quality
of the :voblem solution, the speedup of the overall system performancs as a function of the
number of processors in the grid, and some of the issues in implementing and debugging a

knowledge-based system on a message-passing multiprocessor system,

In this report we descriha the software and (simulated) hardware components of the experiment

and present the qualiiative and quantitative experimental results.

2-79

1. Introduction

This report documents an experiment investigating the potential of a parallel computing
architecture to enhance the performance of a knowledge-based signal understanding system.
This experiment was done within the Expert Systems on Multiprocessor Architectures Project

of Stanford University's Knowledge Systems Labozatory.

The computational characteristics of complex knowledge-based systems are poorly understood,
sspecially in parallel computational environments. Our Architectures Project is performing a
number of experiments to try to gain some understanding of these characteristics and, in
particular, of the potential for concurrent execution of such systems. A primary goal of the
project is to develop software and hardware system architectures which exploit this concurrency
to increase the performance of knowledge-based signal understanding and information fusion
systems.

The Architectures Project is organized according to a hierarchy of computational abstraction
levels as shown in Table 1-1. Each experiment represents a narrow, vertical slice through these
levels and consists of a specific system choice for each level.

For the reported experiment, the choosen application is a knowledge-based ELINT (ELectronics
INTelligence) systera for interpreting processed, passively acquired radar emissions from
aircraft. The TLINT application is implemented in CAGS, an experimental concurrent,
asynchronous object-oriented framework built on Zetalisp [1]. The CAOS framework, in turn,
relies on th- services provided by the underlying hardware system environment. For this
experiment, the hardware system environment is a simulation of a parallel architecture, called
CARE [2]. CARE simulates a communications grid of processing sites where each site
contains a Lisp evaluator, private memory, and a communications and process scheduling
subsystem. Message-passing ic the only means of inter-site communication. CARE is
suc-lated using a general, event-based simulator, SIMPLE [3]. SIMPLE is written in Zetalisp
and executes on a Symbolics 3600 or a Texas Instruments Explorer Lisp machine.! Figure

1-1 illustrates the relationship between the various software components of the experiment.

The ELINT-CAOS-CARE experiment investigated both qualitative and quantitative aspects of

the performanc~ of the overall system. The CARE arcnitecture uses dynamic, cut-through (as

14 version of the SIMPLE simulator which runs on a local area network of multiple Lisp machinss has also heen

implemented [4].

2-80

Table 1-1;

Computational levels,

Level

Research questions

Application

Problem-sclving

Where is the potential concurrency in knowledge-based
signal understanding tasks?

How does the problem solver recognize and express
application dependent concurrency?

What are suitable framework constructs for organizing

frameswork and encoding concurrent signal understanding tasks?
What are appropriate granularities for knowledge,
knowiedge application and data to maximze concurrency?
‘What types of strategies for control of knowledge applicanon
e needed to assure acceptable solution qumry without
introducing excessive execution sefialization?

Knowledge ‘What kinds of knowledge representation mechanisms are

representation suitable for exploiting concurrency in inference and search?

and management

System How can general-purpose symbolic programming languages

programming be extended to suppon concurrency and help manage the

language resource allocation and reclamation tasks on a distnbuted
memory multiprocessor?

Hardware What multiprocessor architectures best support the

system organizaticn and concurrency in knowledge-based

architecture signal understanding applications?

opposed to store and forward) routing through the communication grid for interprocessor
message transmission. Message transmission time is indeterminate. As a consequence, without
the imposition of significant message sequencing protocols (and the corresponding serialization
of execution), operations are inuin'sic'ally non-deterministic in the sense that two executions of
the same program o1 the same input data can result in different problem solutions depending

on different message arrival orders. For many knowledge-based systems, in particular, the

ELINT system, there is no such thing as the correct problem solution but only satisficing (i.e.,
acceptable) problem solutions. One primary objective of the experiment was to investigate the
trade-offs between the imposition of various synchronizations (and the resulting loss of

concurrency) and the quality of the problem solution. A second primary objective was the

more usual investigation of the speedup of the overall system performance as a function of the

number of processing sites in the CARE grid. A third objective was to gain some
understanding of the difficulties in implementing and debugging a reasonably complex
knowledge-based system on a2 multiple address space, message-passing multiprocessor system

such as that represented by CARE.

2-81

ELINT Interpretation of radar
emissions from aircraft

CAOS Concurrent, asynchronous
object system

Zetalisp+ Zetalisp plus locality and
communication constructs

CARE Grid-based, message-passing
multiprocessar specification

SIMPLE Hardware specitication system
and event-driven simulator

Zetalisp

Figure 1-1: The software component hierarchy of the experiment.

In the following sections we describe, in decreasing hierarchical order, each component of the
experiment. Section 2 describes the ELINT application. Sectinn 3 gives an overview the
CAOS programming framework and its approach to concurrency. ELINT's implementation in
CAOS is described in Section 4, and Section 5 describes the salient features of the CARE

architectere and its simulation environment. In Section 6 we present the results of the
ELINT-CAOS-CARE experiment,

2. The ELINT Application

The driving application for our vertical slice exneriment is a prototype, knowledge-based
ELINT system for interpreting processed, passively acquired, real-time radar emissions f:cm
airzcraft. This ELINT system is one component of a muilti-sensor information fusion system,
TRICERO [5] developed several years ago. ELINT was originally implemented in AGE {¢1.
an expert system development tool based on the blackboard paradigm [7, 8]. ELINT is =
relatively simple, but non-trivial, knowledge-based system. Much of 1is knowiedge

implemented procedurally. Hcwever, if ELINT had been implemented as a production ru:2

H

2-82

system, we estimate that its knowledge base would consist of about one thousand rules.?

ELINT's basic analysis technique is to correlate a large number of passively observed radar
emissions into the smaller number of individual radar emitters producing those emissions. It
then correlates the emitters into the yet smaller number of clusters of co-located emitters.

ELINT maintains the track and activity histories of the clusters

2.1. ELINT's Inputs
The inputs to the ELINT system are multiple, time-ordered streams of processed observations

from multiple collection sites. Each observation is presented in a record format. The fields
of an input observation record are shown in Table 2-1.

Table 2-1: Elint observation record.

Field Contents
Observation-Time An integer time-tag indicating whea
the radar emission was sampied
Observation-Site The symbolic name of the collection
* site acquinng the observation
Site-Location The positdonal coordinates of the
collection site at the time of observation
Emitter-Identifier An integer identifing the radar emitter
producing the emassion
Line-of-Bearing The line of bearing from the coliection
site to the observed emitter
Emitter-Type A symbolic radar emitter type designator
Emitter-Viode The operational mode of the emiteer at
the ame of observation
Signal-Quality A symbolic indicator of the signal
quality of the observed emussion

The Site-Location field is necessary since the collection sites can be mobile. The
Emitter-Identifier is a unique integer identifier assigned by the collection sites to each distinct
observed emitter. This identifier is used by the collection sites to indicate multiple
observations of the same emitter both over time and from different collection sites. In

particular, two concurrent observations of the same emitter from different collection sites

2!:\ general, there are currently ao adequate metnics for measuring the complexity of knowledge~based systems. One
crude measure used for rule-based systems 1s the number of rules. Although the numoer of rules does somewhat

ir ticate the amount of knagwledge, 1t does not give much indication of the complexity of the reasoning.

2-83

should have the same identifier. Both the intra-site and inter-site determination of whether
two observed emissions are from the same emitter are based on the electronic characteristics of
the emissions and on signature analysis. _This determination may be in error, and the ELINT
system must cope with such identifier errors. The Emitter-Type of a radar emitter indicates
ihe functional class of the emitter, for example, Air-Intercept (AI), Navigation (NAV) or
Identification-Friend-Or-Foe (IFF), and, if known, the equipment type class of the emitter.
Certain classes of emitter types can have multiple operational modes. The Emitter-Mode, if
applicable, is emitter-type specific. For example, an Al radar can be either in Search Mode or
Lock-on Mode depending on whether it is scanning for a target or whether it is automatically
tracking a specific target. The Signal-Quality of an observation is a subjective, qualitative

measure of the strength of the observed emission, for example, strong, normal, or fading.

All of the input information required for the ELINT system is obtainable from the raw radar
signal data using current, passive radar signal collection and processing techniques. These

techniques are largely automated and employ special-purpose hardware.

2.2. ELINT's Outputs

The primary outputs of the ELINT system are periodic status reports about the tracks and
activities of clusters of emitters in the area under surveillance. A cluster is defined as a
collection of emitters which are co-located over time. That is, two emitters are in the same
cluster if for some given minimum number of consecutive time units (three in the current
ELINT system) their corresponding time-tagged locational fixes are within a distance
determined by the line-of-bearing resolution of the observation site equipment (one degree
resolution in the current ELINT system). Conceptually, two emitters are in the same cluster if
if they are on the same aircraft or are on two tactically associated and cc_)-locatcd (over time)

aircraft, for example, a lead aircraft and his wingman.?

The periodic output reports contain, for each cluster, information about the cluster’s current

3/'\n aircraft can be operating with some (or all) of its radars off. "1 .:cneral, 1t 15 impossible to distinguish
between, for example, (wo co-located aircraft, one with an Al radar on and one with a NAV radar on, and one aircraft
with both 1ts Al and NAV radars on. Hence, our ELINT system does 113 assessments based on emuiter clusters rather

than aircraft

2-84

heading, position and track; an estimate of the number and types of aircraft in the cluster;¥ an
indication of the cluster's current activity; and an indication if the cluster represents an
immediate threat, for example, if it is within a certain proximity of a friendly aircraft, if its

Al radar is in Lock-on Mode, or if its missile guidance radar is on.

2.3. ELINT's Processing Flow

The basic reasoning strategy used by the ELINT application is data-driven accumulation of
evidence for the existence, the tracks, and the activities of emitters and clusters based on input
observations and infered information. The primary processing flow is a kind of pipeline
where the pipeline stages are observations, emitters and clusters.

Upon receipt of a new observation, the system first determines if the observed emission
matches (i.c., has as a source) a known emitter (i.e., an emitter on ELINT's "situation board").
This match is based on the Emitter-Identifier assigner by the collection site to the observation,
and it is verified using the emitter's characteristics and its track and heading histories.
Depending on the outcome of the match, one of the frllowing actions is taken:

1. If the observation does not match a known emitter, then 3 new emitter which is the

source of the observed emission is hypothesized on the situation board and
initialized from the information contained in the observation.

2. If the observation does match an emitter on the situation board and the match is
verified, thern -~ : information contained in the observation is used to update the
attributes of the matched emitter, including increasing the confidence level of the
hypothesis that the emitter represents. Moreover, if the new observation is the
second (or greater) observation of the emitter for the current time and it is from a
different collection site than the previous observation(s) at that time, then a
locational fix for the emitter is computed using the observed lines of bearing. If,
in addition, the Emitter-Type and/or Emitter-Mode indicate a near-term threat to a
friendly aircraft, then a threat report is cutput.

‘Knowledge relating an aircraft type, for example F-15 or MIG-3, with the number and types of radars it carries s
availatle. Using this knowiedge and the 1dentified emitter types in a cluster, it 1s possible to roughly estimate bounds

on the number and types of aircraft in the cluster.

2-85

3. If the observation matches a known emitter but fails the martch verification test,
then an error in the Emitter-Identifier is indicated and the situation board is
modified so as to undo any incorrect inferences based on the error. Also, an
ide--ifier error report is output to the collection sites.
On a periodic basis, the status of each emitter on the situation board is evaluated and various
actions are taken:
1. If there have teen no recent observations of the emitter, then the confidence level
of the emitter is reduced. If, as a consequence of this reduction, that level falls
below a given no-confidence threshold, then the emitter and all of the consequences

infered from it (including cluster association) are deleted from the situation board.

2. If the confidence level is above a given full-confidence threshold and the emitter is
not currently associated with a known cluster, then an attempt is made to match the
emitter with a cluster on the situation board. This match is based on the track art
heading histories and the type attributes of the emitter and the cluster. If a match
is made, then the emitter is acsociated with the matched cluster and the emitter’s
current attributes are used to update the attributes of the cluster. If the match fails,

then a new cluster is hypothesized on the situation board and the emitter is
associated with it

3. In the remaining case of a recently observed emitter with an associated cluster, the

current attributes of the emitter are used to update the attributes of ifs associated
cluster.

Also on a periodic basis, the state of each hypothesized cluster cn the situationr bcard is
examined. If all of the emitters associated with the clister have been Jela:ad, thes e oi.-r
is deleted from the situation board. Otherwise:

1. The cluster is checked to see if it should be split into two (or more) clusters based
on the currrent locations of its associated emitters. If so, new clusters with ihe

appropriate associated emitters are hypothesized on the situation board.

2. The track history, heading history, speed history and activity history of e Ciaster

are updated; and, if any new emitters have been recently associated with ihe ciuster,

an estimate of the types and numbers of aircraf. comprising the cluster 1s deriveq.

2-86

3. A current status report for the cluster is output.

The ELINT processing flow lends itself naturally to concurrent execution. The parallel
implementation of ELINT using CAOS is¢ described in Section 4. The CAOS system itself is
described in the following section.

3. The CAOS Programming Framework

CAOS is a framework which supports the encoding and the execution of multiprocessor expert
systems. [t represents an early attempt to bridge the gap between the application specification
and the multiprocessor system programming primitives. The design of CAOS is predicated on
the belief that many highly parallel architectures (eg., hundreds of processors) will emphasize
limited communication between processor-memory pairs rather than uniformly shared memeory.
We expect that such an architecture will favor relatively coarse-grained problem decomposition
with little synchronization between processors. CAOS is intended for use in real-time, data
interpretation applications such as continuous speech recognition and radar and sonar signal
interpretation (see, for example, [9, 10]). CAOS is based on an object-oriented programming
paradigm, and it draws many of its ideas from the Flavors system [1] and the Actors paradigm
[11].

A CAOS application consists of a collection of communicating, active agents, each responding
to a number of application-dependent, predeclared messages. An agent retains long-term local
state. [Each agent is a multi-process entity, that is, an arbitrary number of processes may be
active at any one time in a single agent. Conceptually, an agent can be thought of as virtual,
multiprocess processor and memory pair. It responds to externally sent messages, and these
message responses can alter the state of its local memory and can include the sending of
messages t0 other agents.

CAOS is designed to express parallelism at a relatively coarse grain-size. For example, in the
ELINT experiment, the message handlers (i.c, the methods) which implement the message
responses are written as Lisp procedures, each averaging about one hundred lines of primitive
Lisp code. CAOS supports no mechanism for finer-grained concurrency such as within the

execution of agent processes, but neither does it rule it out. We could easily imagine message

STM active processes in an agent are not scheduled preemptively. Instead, an executing agent process either runs to

completion or until it is "blocked’ awaiting some remote service (see Section 5).

2-87

methods being written, for example, in QLisp [12], a concurrent dialect of CommonLisp which
supports finer-grained concurrency.

3.1. CAOS® Approach to Concurrency

A CAOS application is structured to achieve high degrees of concurrency in the application
execution in two principal manners: pipelining and replication. Pipelining is most appropriate
for representing the flow of information between levels of abstraction in an interpretation
system. Replication provides means by which the interpretation system can cope with
arbitrarily high data rates.

3.1.1. Pipelining

Pipelining is a common means of parallelizing tasks through a decomposition into a linear
sequence of concurrently operating stages. Each stage is assigned to a separate processing unit
which receives the output from the previous stage and provides input to the next stage.
Optimaily, when the pipeline reaches a steady-state, each of the processors is busy performing
its assigned stage of the overall task.

CAQS promotes the use of pipelines to partition an interpretation task into a sequence of
interpretation stages where each stage of the interpretation is performed by a separate agent.
As data enters one agent in the pipeline, it is processed, and the resuits are sent to ti:e next
agent. The data input to each successive stage represents a higher level o abstraction.

Sequential decomposition of a large task is frequently very natural. Structures as disparate as
manufacturing assembly lines and the arithmetic processors of high-speed computing systems
are frequently based on this paradigm.

Pipelining provides a mechanism whereby concurrency is obtained without duplication of
mechanism (i.e., machinery, processing hardware, knowledge, etc.). In an optimal pipeline of a
processing elements, the throughput of the pipeline is n times the throughput of a single
processing element in the pipeline.

Unfortunately, it is often the case that a task cannot be decomposed into a simple linear
sequence of subtasks. Some st.ge of the sequence may depend not only on the results of it
immediate predecessor, but 2ls0 on the results of more distant predecessors, or worse, s¢ 1e
distant successor (e.g., in feedback loops). An equally disadvaniageous decomposition is one in
which some of the processing stages take substantially more t.me than others. The effect of

either of these conditions is (0 cause the pipeline to be used less efficiendy. Both these

2-88

conditions may cause some processing stages to be busier than others. In the worst case, some
stages may be so busy that other stages receive almost no work at all. As a result, the
n-element pipeline achieves less than an n-times increase in throughput. We discuss a partial

remedy for this situation below.

3.1.2. Replication

Concurrency gained through replication is ideally orthogonal to concurrency gained through
pipelining. Any size processing structure, from an individual processing element to an entire
pipeline, is a candidate for replication. Consider a task which must be performed on the
average in time r, and a processing structure which is able to perform the task in time T,
where T > t. If this task were actually a single stage in a larger pipeline, this stage would then
be a bottleneck in the throughput of the pipeline. However, if the single processing structuse
which performed the task were replaced by 7/t copies of the same processing structure, the
effective time to perform the task would approach r, as required. Replication is more costly
than pipelining, but it does avoid some of the problems associated with developing a pipelined
decomposition of a task.

Our work leads us to believe that such replicated computing structures are feasible, but not
without drawbacks. Just as performance gains in pipelines are impacted by inter-stage
dependencies, performance gains in replicated structures are impacted by inter-structure
dependencies.

Consider a system composed of a number of copies of a single pipeline. Further, assume the
actions of a particular stage in the pipeline affects each copy of itself in the other pipelines.
In an expert system, for example, a number of independent pieces of evidence may cause the
system to draw the same conclusion. The system designer may require that when a conclusion
is arrived at independently by different means, some measure of confidence in the conclusion
is increased accordingly. If the inference mechanism which produces these conclusions is
realized as concurrently operating copies of a single inference engine, the individual inference
engines will have to communicate between themselves to avoid producing multiple copies of
the same conclusion rather than a composite conclusion. Any consistency requirement between
copies of a processing structure decreases the throughput of the entire system, since a portion
of the system's work is dedicated to inter-system communication. Examples of this situation
are shown in Section 4 where we describe the CAOS agent types for the ELINT application.

2-89

3.2. Programming in CAOS

CAOS is basically a package of operators on top of Lisp. These operators are partitioned into
three major classes -- those which declare agent classes, those which initialize agents, and those
which support communication between agents. We now describe briefiy the CAOS operators

for each of these classes. A more complete description of these operators is given in [13].

3.2.1. Declaration of Agents

Agents classes, like most object-oriented classes, are declared within an inheritance setwork.
Each agent class inherits the attributes of its (multiple) parents. The root CAOS agent <'iss,
vanilla-agent, contains the minimal attributes required of a functional CAOS agent. Ail :ther
CAQOS agents have the vanilla-agent as a parent, either directly or indirectly. Another
CAQOS-declared agent class, process-agenda-agent, is a specialization of vanilla-agent, ard
includes a priority mechanism for scheduling the execution of messages. The vanilla-agent

schedules its messages in 2 FIFO manner only.

Application agent classes are declared by augmenting the following primary attributes of
CAOS-declared or other ancestral agent classes:

Local-Variables: An instance agent's local variables store its private state. The agent's message
handlers may refer freely to only those variables declared locally within the agent. Each local
variable may be declared with an initial value.

Messages-Methods: The only messages to which an agent may respond are those declared in the
agent's class declaration. Associated with each declared message nzme is the name of the
message’s metkod (i.e., the message's message handler). In CAOS, a method name must refer to
a defined Lisp procedure. This declaration simpilifies the task of a resource allocator which
must load application code onto each CARE site.

Clocks-Methods: An agent may pericdicaliy invoke actions based on :aternal clock “ticks.” For
example, the periodic update of emitter agents and the periodic outpui of cluster staius -z22ris
are invoked by clock ticks. A clock is defined by its tick intervzl. /ienever za aizinal

agent clock ticks, the set of methods associated with that clock are scheduled for sxscuticn

Critical-Methods: This attribute declares certain sets of methods as being mutually “critical

r
)
\ond
o

regions" for their owning agents.5 Each such set of critical methods has an associated lock.
Before .an owning. agent agent executes a critical method, this lock is checked. [f it is
unlocked,- the agent locks it and executes the method. Upon completion of the method, the
agém unlocks the lock. If the lock is locked, the method is queued in a FIFO queue awaiting

. the unlocking of the lock.

There are a number of additional basic agent attributes. However, most of these are used only
interrally by CAOS.

3.2.2. Initialization of agents

An iritial CAOS configuration is specified by a two-component initialization form. The first
component of the form creates the static agent instances. Some agent instances are created
during system initialization and exist throughout a CAOS run. Such agent instances are called
static -agents as opposed. to dynamic agents which are created (and possibly deleted) during
program execution. For programmer convenience, we allow code in agent message handlers and
defauit values of local-variables to reference such static agents by name. Before an agent
instance begins running, each symbolic reference to the declared static agents is resolved by the
CAQS runtimes.

The second cdmponcnt of the form is a list of expressions to be evaluated sequentially when
CAOS's static agent instantiation phase is complete. Each expression is intended to send a
message to one of the static agents declared in the first part of the {orm. These messages' serve

to initialize the application. For example, in the ELINT application the initialization messages

open log files and start the processing of ELINT observations.

Agent instances may also be created dynamically during execution. The creation operator
accepts an agent class name and a location specification.” The remote-address of the
newly-created agent instance is returned. The remote-address of an agent includes the CARE

site coordinates where the agent resides and a pointer to the agent in the address space of that

6a design goal for ELINT in CAOS was to avoid the use of critical methods, and our ELINT implementation does

not use any. The CAOS initialization routines, however, do use such methods.

7Curremly, agents may be created only "at” or “near” specified CARE sites. CAOS makes no attempt at dynamic

load balancing.

2-91

site. A dynamically created agent may not be referenced symbolicaily, however, its
remote-address may be exchanged freely.

3.2.3. Communications Between Agents

Agents communicate with each other by exchanging messages. CAOS does not guarantee when
messages reach their destinations. Due to excessive message traffic or processing element
failure, messages may be delayed indefinitely during routing. It is the responsibility of the
application program to detect and recover from such delayed messages.

Two classes of messages are defined: those which return values, called value-desired messages,
and those which do not, called side-effect messages. The value-desired messages are made to
return their values to a special cell called a future which represents a "promise” for an
eventual value® Processes attempting to access the value of a future are dlocked until that
future has had its value set. Futures are first-class data types, and they may be manipulated by
non-strict Lisp operators (e.g., list) even if they have not yet received a value. It is possible
for the value of a CAOS future to be ser more than once, and it is possible for there to be
multiple procesces awaiting a future's value to be set

The CARE primitive post-packet, which sends a packet from one process to another, is
employed in CAOS to produce three basic kinds of message sending operations:

post: The post operator sends a side-effect message to an agent. Th+ sending process supplies a
remote-address to the target agent (or its name in the case of a static agent), the message's
routing priority, and the message's name and arguments. The sender continues executing while
the message is delivered to the target agent

post-future: The post-future operator sends a value-desired message to the target agent. The
sending process supplies the same parameters as for post, and it is immediately returned a local
pointer to the future which will eventually receive a value from the target agent. As for post,
the sender continues executing while the message is being delivered and executed remotely. A
process may later check the state of the future wi'th the future-satisfied? operator or access the
future's value wiih the value-future operator. This latter operator will block the process (i.e.

suspend its execution and "swap it out") if the future has not yet received a +alue. When the

8Fumm are also used in Multilisp [14]. The HEP Supercomputer [15] implemented a simple version of Futures as

2 process synchronizat.on mechanism.

2-92

future finally receives a value, the blocked process is rescheduled for resumed execution.

post-vslue: The post-value operator is similar to the post-future operator except that the
sending process is immediately blocked until the target agent has returned a value. This
operator is defined in terms of post-future and value-future, and it is provided for

programming convenience.

It is possible to detect delay of value-desired messages by attaching a timeout to the associated
future. The operators post-clocked-future and post-clocked-value are similar to their untimed
counterparts but allow the caller to specify a timeout-period and timeout-action 10 be
performed if the future is not set within the timeout-period. Typical timeout-actions include
setting the future's value to a default value or resending the original message using the repost
operator.

There also exist versions of the basic posting operators which allow the same message to be
sent to multiple agents simultaneously. These versions exploit the multicast facilities of CARE
(see Section 5)9

Multipost sends a side-effect message to a list of agents while multipost-future and
multipost-value send value-desired messages to lists of agents. In the latter two cases, the
associated future is actually a list of futures, and the future is not considered satisfied until all
the target agents have responded. The value of such a message is an association-list where each
entry in the list is composed of an agent's remote-address or name and the returned message
value from that agent. There exist clocked versions of these operators (called, naturaily,
multipost-clocked-future and multipost-clocked-value) to aid in detecting delayed multicast
messages.

3.3. The Runtime Structure of CAOS

CAOS is structured around three principal levels: site, agent, and process. Two of these levels,
site and process, reflect the organization of CARE. The remaining agent level is an artifact of
CAQS. We describe here only briefly the runtime structure of CAOS. This structure is
described in greater detail in [13].

9Neither CAQS nor CARE currently support a "predicated multicast™ mode wherein messages would be sent to all
agents satisfying a particular predicate. Messages can only be muiticast to a fully-specified list of agents. Receiving

agents can, of course, apply arbitrary predicates to the message in order 10 determine their consequent action.

2-93

The implementation of CAOS described in this report is written in Zetalisp [1] and the
primitive CARE operators using Zetalisp's object-orientzd programming tool, Flavors[1].

Each CARE site contains a CAOS Site-Manager. A Site-Manager is realized as a Flavors
instance. fts instance variables store site-global information needed by all agents located on
the site. In addition, each Site-Manager includes CARE-~level processes which perform the
functions of creating new agents on its site and translating static agent symbolic names into
agent addresses.

Each CAOS agent is also realized as a Flavors instance A CAOS agent is a multiprocess
entity. Most of the processes are created in the coursc of problem-solving activity. These
processes are refered to as user processes. At runtime, however, there are always two scecial
processes associated with each CAOS agent -- the agent input monitor process and the agent
scheduler process. The agent input monitor process watches the CARE stream by which the
agent is known to other agents. It handles request messages and responses from value-desired
messages from these agents. CAQS user processes are created in response tG request messages
from other agents or clocked methods. The agent scheduler process collaborates with the
CARE site's operator processor in the scheduling of these user processes (see Section 5).

4. ELINT's Implementation in CAOS

We describe now the agent types and their organization for the ELINT application as
implemented in the CAOS framework. This implementation illustrates some of the benefits
and some of the drawbacks of the framework. As discussed in S<viion 2, ELINT is an exper:
system whose domain is the interpretation of passively-observed radar emissions, ELINT is
meant to operate in real time. Emitters appear and disappear during the lifetime of an ELINT
run, The primary flow of information in ELINT as implemented in CAOQOS is through 3
pipeline with replicated stages. Each stage in the pipeline i; an agent. The basic ELINT sgent
pipeline is illustrated in Figure 4-1

Observstion Obsaervation Emitter
- Reader . Handler > p———_{ Cluster I

Figure 4-1: The basic ELINT a :nt processing pipe{ine.'

4.1. ELINT Agent Types
The ELINT agent types described here are those used by the CT control strategy version of
ELINT in CAOS (see Section 6).

Observation~Reader Agent

Observation-reader agents are an artifact of the simulated environment in which our ELINT
implementatior runs. Their purpose is to feed radar observations into the system.
Observation-readers re driven off system clocks. At each clock "tick” (one ELINT time unit),
they supply all - _.vations for the associated time interval to the proper observation-hand!er
agents. This behavior is similar to that of radar collection sites in an actual ELINT setting.

Observation-Handler Agent

The observation-handler agents accept radar observations from associated radar collection sites.
Of course, in the simulated environment the observations actually come from
observation-reader agents. There ma} be several observation-handlers associated with each
collection site. The collection site chooses to which of its observation-handlers to pass an
observation based on some scheduling criteria, for example, round-robin.

The contents of an ELINT observation was described in Section 2. In particular, each
observation contains an identifier number assigned by the collection site to distinguish the
source of the observation from other krown sources. This source identifier is usually, but not
always, correct. When an observation-handier receives an observation, it checks the
observation’s identifier to see if it already knows about the emitter which is the observation's
source. If it does, it passes the observation to the appropriate emitter agent which represents
the observation’s source. If the observation-handier does not know about the emitter, it asks

an emitter-manager agent to create a new emitter agent and then passes the observation to that
new agent.

Emitter-Manager Agent

There may be many emitter-manager agents in the system. An emitter-manager's task is to
respond to requests from observation-handlers to create new emitter agents with associated
source identifier numbers. If there is no such emitter agent in existence when the request is

received, the manager will create one and return its remote-address to the requesting

2-95

observation-handler agent. If there is such an emit-er agert in existence when the request is
teceived, the manager will simply return its remote~address to the requestor. This situation
arises when one observation-handier requests 21 smitter that anothar observation-handler had
previously requested. Emitter-managers must also haadle the czse of “almost concurrent”
requests for the same emitter. This case occurs when 2 request is received for an emitter agent
which is currently being created by another process on ancther CARE site in response to a
slightly earlier request.

The reason fcr the emitter-manager's existencz is to reduce the amount of inter-pipeline
dependency with respect to the creation of emitters. When ELINT creates an emitter it is
similar to a typical expert system drawing a conclusion based on some evidence. ELINT must
create its emitters in such a way that the individual observation-handlers do not each end up
creating copies of the "same” emitter, that is, creating multiple emitter agents with the same
associated source identifier (see Section 3.1.2). Consider the following strategies that the
observation-handler agents could use to create new emitter agents:
1. The handlers could create the emitter agents themselves uamediately as needed.

Since the collection sites may pass observations with the same source identifier to

any observation-handler, it is possible for multiple observation-handlers to each

create its own copy of the same emitter. This strategy is not acceptable.

2. The handlers could create the emitter agents themselves, but inform the other
handlers that they have done this. This scheme breaks down when two handless try
simultaneously (or almost simultaneously) to create the same emitter.

3. The handlers could rely on a single emitter-manager agent to create all emitters.
While this approach is safe from a consistency standpoint, it is likely to be

impractical as the single emitter-manager could become a processing bottleneck.

4. The “andlers conld send requests to one of rmany emitter-managers chosen by some
aroitrary method. This idea is nearly correct, but does not rule out the possibility

of two emitter- nanagers each receiving creation requests for the same emitter.

S. The handlers could send requesis 'c one of many emitter-managers chosen through

seme aigorithm wS;ct: 15 invariant with respect to the source identifiers.

N
L}
(Ve
(o]

This last strategy is the one used used in our implementation of ELINT. The aigorithm for
choosing which emitter-manager to use is based on a many-tc-one mapping of source
identifiers to emitter-managers.1?

Emitter Agent

Emitter agents hold the state and history of the observation sources they represent. As each
new observation is received by an emitter agent, it is added to a list of new observations. On
a periodic basis, this list of new observations is scanned for interesting information. In
particular, after enough observations are received, the emitter may be able to determine the
heading, speed, and location of the source it represents. The first time it is able to determine
this information, it asks a cluster-manager agent to either match the emitter to an existing
cluster agent (as described in section 2.3) or create a new cluster agent to hold the single
emitter. Subsequently, it sends an update message to the cluster agent to which it is associated
indicating its current heading, speed, and location.

Emitters maintain a qualitative confidence level of their own existence (possible, probable,
positive and was-positive). If new observations are received often enough, the emitter will
increase its confidence level until it reaches positive. If an observation is not received by an
emitter in the expected time interval, the emitter lowers its confidence by one step. If the
confidence falls below possible, the emitter deletes itself, informing its manager and any
cluster to which it is associated of its deletion.

Cluster-Manager Ageat

The cluster-manager agents play much the same role in the creation of cluster agents as the
emittei-manager agents play in the creation of emitter agents. However, it is not possible to
compute an invariant to be used for a many-to-one mapping betwsen emitters and cluster
managers. If ELINT were to employ multiple zluster-managers, any strategy for which of the
many managers an emitter agent chooses to request a cluster maich could still result in the
creation of multiple instances of the "same” cluster {i.e., multiple cluster agents representing
the same physical cluster of emitters). Thus, we have chosen to implement ELINT using only
3 single cluster-manager. Fortunately, new cluster creaticn is a relatively rare event, and the

mfhe sigonthm simply computes the soutce identifier modulo the number of emitter-managers and rmsps that

aun’ o & particular manager.

2-97

single cluster-manager has never been observed to be a processing bottleneck.

As described above, requsts- from emitters to associate themselves with clusters are specified as
match requests over the extant clusters. Emitters are matched to clustesrs on the basis of their
location, speed, and heading histories. However, the cluster-manager does not itself perform
this matching operation. Although it knows about the existence of each cluster it has created,
it does not know about the current state of those clusters. Thus, the cluster-manager asks all

of 1ts clusters to (concurrently) perform a match.

If none of the clusters responds with a positive match, the cluster-manager creates a2 new
cluster for the emitter. If one cluster responds positively, the emitter is added to the cluster
and it is so informed of this fact. If more than one cluster responds positively, this usually
indicates that there is not yet sufficieni resolution of the emitter’s history to uniquely associate
it with a cluster. In this case the emitter to cluster matching operation is tried again after
more observations of the emitter have been processed.

Cluster Agent

The radar emissions from a cluster of emitters often indicate the activities of the aircraft
represented by that cluster. For example, emissions from a missile gurdance radar indicate that
an air-to-air attack is imminent. Each cluster agent periodically applies heuristics about types
of radar signals to try to determine the current activities of its represanted aircraft, and, in
particular, if these activities represent a threat to friendly aircraft. This activity information,
the aircraft type information, and the merged track parameters of the emitters associated with
each cluster are the primary outputs of the ELINT system. Also, each cluster periodically
checks to see if all constituent emitters have been deleted. If so, it deletes itself.

Time-Manager Agent

Many of the knowledge-based actions taken by an ELINT agent make use of the ageni’s
last-observed time, that is, the time stamp of the most recent observation associated directly or
indirectly with the agent. For example, if an emitier agent determines that it has received 10
new associated observations for several data time intervals (i.e, that it is "out~of-date”), :t will

consider itself as no longer exisiting and it will delete itself and all of its relational links from
ELINT's situation board.!!

. .
l'Tlus action reflects the expectation knowledge that :f an emutter ~ithin the area of observauon :s observed it uime

4, then it is expected that 1t will be observed at time 1+].

2-98

In an asynchronous message passing system such as CARE, it s difficult for am agent to
determine whether it is out-of-date because it has not been observed recently or because
messages 1o it which would result in an update of its last-observed time are delayed due to
overall system load or local load imbalances. One solution to this problem would be for each
observation-handler agent to send an "end-of -observation-time~intervai” message 10 each of its
known emitter agents whenever it observes the crossing of an observation time interval
boundary.12

This solution was rejected for the reported implementation of ELINT because of a perceived
excessive message overhead.!’ Instead, our ELINT experiment uses a time-manager agent
Whenever an observation-handler agent observes a new inpnt observation time stamp, it reports
this new time to the time-manager via a message. The time-manager maintains a conservative,
global current observation time which is the minimum of the the reported time stamps.
Whenever any agent considers taking a drastic, non-reversible action which is based on its
being out-of-date (eg. deleting itseif), it requests a confirmation from the time-manager that
its (the requesting agent's) last-observed time is sufficiently older than the time-manager's
global current observation time. The requesting agent does not perform its considered action
until it receives the confirmation. If in the interim, the requesting agert receives any messages
which resuit in an update of its last-observed time, the confirmation is ignored.

Reporter Agent

Instances of the reporter agent class are used to asynchronously cutput various ELINT reports
to displays and/or -iles, for example, threat reports and periodic situation board reports. In
addition, insta. "es of a specialization of the reporter class, debug-trace-veporter, are used
during applicatio.r program debugging to asynchronously output debugging traces in 2 manner
that minimally impacts system timing dependencies.

uSince cach nput observation stream is n observation-time sequential oraer, each chservation-handler evertuaily

knows when such a time boundary is crossed.

13Thiq overhead may be more jerceived thay actual. A more recent :mpleTentation of ELINT uses such
“end-of -observation-fime-interval” mo<sages Inai resuits seem to indicate that the associated cost is not excessive

(see [16]).

o

WO

4.2. ELINT Agest Organization

The ELINT agents are basically organized as a pipeline with replicated stages where each stage
is an agent. Inter-pipeline dependencies and dependencies between replicated stages are
managed by emitter-manager and cluster-manager agents. The amount of replication (i.e., the
number of agents) at each pipeline stage is a function of that stage. For some stages, the
number of replicated agents at that stage is fixed during system initialization. For example,
the numbers of observation-handler agents, emitter-manager agents, and cluster-manager agents
are pre-determined based on the number of collection sites and their output data rates. The
numbers of emitter stages and cluster stages vary during the course of execution since the
corresponding emitter agents and cluster agents are created and deleted as the radar emitters
and collections of radar emitters which they represent appear and disappear over time.

The overall organization of the ELINT agents is illustrated in Figure 4-2

[cosecton |

| Cellaction
Reporier

Observation
Reeders

LT

Clusfers

g NS

Obsarvation
Handlurs

Time Theast Situation
Manager Reportar Repetiar

Figure 4-2: The overall ELINT agent communication organization.

5. An Overview of CARE

The CARE architectural specification and its simulation environment provide a parameterized
and instrumented multiprocessor simulation testbed designed to aid research in alternau 2
parallel architectures. The testbed executes within SIMPLE, a hierarchical, event-driven

simulator [3].

A CARE architecture is a grid of tens to hundreds of processing sites interconnected via a

2-100

dedicated communications network. The network uses dynamic, buffered, cut-through routing,
and it supports multicast inter-site message transmission. The ELINT experiment, for example,
was performed on various square CARE grids of hexagonally connected sites, that is, each site,
excluding those at the edges of the grid, is connected to six of its eight nearest neighbors.

As shown in Figure 5-1, each CARE site consists of an evaluaror, a general-purpose
processor-memory pair; an operator, a dedicated communications and process scheduling
processor which shares memory with the evaluator; and network interfaces -- net-inputs and
net-outputs -- that accomplish pipelined message transmission, flow control, deadiock
avoidance, and routing. Each net-input at a site may establish a connection with a net-output
at any site, and all such connections at a site may be simultaneously active.

N ! ” — -
| e | g T TERATR g
\ ~:/ \ ',.;/ g -:—.
e -*;\:2/ N =
s L] EVALUATOR
NN e _L — %
AN ';_:__/ l-'\
AN

Figure 5-1: A hexagonally connected CARE grid.

Application-level computations take place in the evaluator. The operator pe;forms two duties.
As a2 communications processor, it is responsible for initiating and receiving messages. As a
scheduling processor, it queues application-level processes for execution in the evaluator.
Message routing is performed by the net-input and net-output network interfaces.

In our simulation of CARE, e evaluator is treated as a "black box" Lisp processor. None of
its internal operation is sirr:.at-1. The Lisp machine hosting the simulation serves as the
evaluator in each processing srce. The operator, however, is functionally simulated, and the
network interfaces are sim.dz:.¢ 2d instrumented in great detail.

CARE allows a number of parameters of the processor grid to be adjusted. Among these
parameters are: the speed of the evaluator, the speed of the communications network, the
network routing algorithm, and the speeds of the process creating and switching mechanisms.
By aliaring these parameters, a single processor grid specification can be made to simulate a
wide variety of actual multiprocessor architectures. For exampie, we can experiment with the
optimal level-of-granularity of problem decomposition by varying the speed of both
process-switching and communications. Alternative network topoiogies can be studied by using
SIMPLE'’s graphic interfaces and composition operators to configure CARE components into
any topology that can be wired.

The CARE simulation environment provides detailed displays of such information as evalcator,
operator, and communication network utilization, and process scheduling latencies. This
instrumentation package informs developers of CARE applications of how efficiently their
systems make use of the simulated hardware.

A more detailed description of CARE is given in [16], and the technolory considerations
underlying the CARE architecture are discussed in Appendix I.

6. Results and Conclusions

The CARE architectural simulation testbed and the CAQOS system we have described have been
fully implemented, and they are in use by several groups withir our Architectures Project
CAQS-CARE executes on the Symbolics 3600 family of machines as well as on the Texas
Instruments Explorer Lisp machine. ELINT, as described in Sections 2 and 4, has also been
fully implemented, and we have analyzed its performance on various size CARE grids.

6.1. Evaluating CAOS
CAOS is a rather special-purpose environment, and it should be evaluated with respect (o ihe
programming of concurrent, reai-time signal interpretation systems. In this section, we explore

CAOS’s suitability along the dimensions of expressiveness, efficiency, and scalability.

6.1.1. Expressiveness

When we ask that a language be suitabiy expressive, we ask that its primitives be a good maich
to the concepts the programmer is trying to encode. The programmer shouid not need
resort to low-level "hackery” to implement operations which ought to be part of the iznguage
We believe we have succeeding in meeting this goal f,r CACS {although 10 date, only CAOS:

designers have written CAOS applications). Programming in CAOS 1s essentially programming

2-102

in Lisp using objects but with added features for declaring, initializing, and controlling
concurrent, real-time signal interpretation applicatiors.

5.1.2. Efficiercy

CAOS has a very complicated architecture. The lifetime of 2 message involves numerous
proces:ing states and scheduler interventions. Much of this complexity derives from the desire
t0 support alternate scheduling policies within an agent The cost of this complexity is
approeximately one order of magnitude in processing iatency. For the common settings of
simulation parameters, CARE messages are exchanged in about 2 to 3 miiliseconds, while
CAOS messages require about 30 milliseconds. It is this cost which forces us to decompose
applications coarsely, since more fine-grained decompositions would inevitably require more
message traffic.

We conclude that CAOS does not make efficient use of the underiying CARE architecture.
This conclusion has lead 10 2n evolutioa of both CAOS and CARE which is described briefly
in Section 6.3 and ia detail in [16]

6.1.3. Scalability

A systems which scales well is one whose performance increases commensurately with its size.
Scsiability is a common metric by whkich multiprocessor hardware architectures are judged. For
exampie, does 2 100-processor realization of a particular architecture perform tea times better
than a 10-processor realization of the same architecture? Does it perform only five times
better, only just as well, or does it perform even worse? In hardware systems, scalability is
typrcally limited by various forms of contention in memories, busses, etc. The 100-processor
system might be no faster than the l0-processor system because 2il interprocessor
communications are routed through an eiement which is oniy fast enough (0 suppert ten
processors.

We ask the same question of a CAOS appliication. Does the throughput of ELINT, for
example, increase as we make riore processors availadls to it? This question is critical for
CAOS-based, resl-time interpretation systems. Our only means of coping with arbitrarily high
data rates is by increasing ihe number of processors.

We believe CAOS scales weil with respect to the number of available processors. The potential
iimiting factors to its scaling are increwsed software contention, such as the inter-pipeiine
bottlenecks described in Section 3, and increased hardware contention, such as cverioaded

processors and/or communication channels. Software contention can be minimized by the

design of the application. Communications contention can be minimized by executing CAOS
on . of an appropriate hardware architecture such as that afforded by CARE. CAOQS
applications tend to v +. ¢ 'y decomposed. They are bounded by computation, rather than
communication, and communications loading was not a problem in our ELINT-CAQS-CARE
experiment.

Unfortunately, processor loading 1.mains an issue. A configuration with poor load balancing
in which some CARE sites are busy while others are idle does not scale well. Increased
throughput is limited by contention for processing resources on overloaded sites while resources
on unloaded sites go unused. The problem of automatic load balancing is not addressed by
CAOS as agents are simply assigned to processing sites on a round-robin basis with no attempt
to keep potentially busy agents apart. We currently have no solution to the problem of
processor load balancing beyond that of carefully "hand crafting" a site allocation strategy for
each application and then "tuning” that strategy via succesive refinement.

6.2. Evaluating ELINT Under CAOS

The input data set used for most of our ELINT-CAOS runs was based on a scenario involving
16 aircraft mounting a total of 88 radar emitters with between 4 and 45 ~mitters active and
observed during any one data time interval. The scenario takes place in a 60 by 80 mile area
over 36 time units, and it involves 1040 separate emitter observations.

Our experience with ELINT indicates that the primary determiner of throughput and solution
quality is the strategy used in making individual agents cooperate in producing the desired
interpretation. Of .eccndary importance is the degree to which processing load is evenly
balanced over the processor grid. We now discuss the impact of these factors on ELINT's
performance.

The following three “control” strategies were used in our experiment:

1. NC: This "no control” strategy represents limited inter-agent control. Agents
initiate actions independently. Whenever an agent wants to perform an action, it
does so as soon as processing resources are available. For example, whenever an
observation-handler agent needs a new emitter agent, it simply creates it with no
attempt to coordinate this creation with other observation-handlers. As a result,
multiple, non~-communicating copies of an emitter may be created, and each copy
receives a only portion of the input data it requires. The NC strategy was expected

to produce qualitatively poor results, and it was primarilly intended only as a

2-104

=

baseline against which to compare more realistic control strategies. What was
surprising was that the strategy also produced quantitatively poor results (see below).

2. CC: In this strategy, agents cooperate in the creation of new agents via manager
agents as described in Section 4. The manager agents assure that only one copy of
an agent is created, irrespective of the number of simultaneous creation requests.
All requestors are returned a reference to the single new agent Originally, we
believed the CC (for "creation control”) strategy would be sufficient for ELINT to
produce satisficing high-level interpretations. Our experiment results showed that
+ .5 was not always the case (see below).

3. CT: The CT ("creation and time control™) strategy was designed to additonally
manage the skewed views of real-world time which develop in agent pipelines. For
example, this strategy prevents an emitter agent from deleting itself when it has not
received & new ocsarvution in a while even though some observation-handler agent
has sent the emitter an observation which it has yet to receive. The agents
corresponding to the CT strategy are those described in Section 4.

Table 6-1 illustrates the qualitative effects of the vavious control strategies and grid sizes. The
table presents the six major performance attributes by which the quality of an ELINT run is
measured. Since the input data for the ELINT experiment were generated from known
scenarios, it was possible to compare the resuits of an ELINT run with “ground truth.”

Table 6-1: ELINT Solution Quality Versus Control Strategies and Grid Sizes.

Qualitative Controf strategy/grid size
performance
attribute

NC16 CC/16 CC/36 CT/4 CT/16 CTi36

False alarms 1% 0 0 0 0 0
Reincarnation 49% 42 2 0 0 0
Conlidences 19% 20 90 89 93 95
Fixes 48% 42 99 100 100 100
Threats 65% 63 81 87 87 90
Fusion 0% 0 n 85 88 89

The major qualitative performance attributes are:

False Alarms: This attribute is the percentage of emitter agents that ELINT should not have

2-105

hypothesized as existing with respect to the total number of emitter agents hypothesized.

ELINT was not severely impacted by false alarms in any of the control configurations in
which it was run as the knowledge used for hypothesizing new emitters was quite conservative.
That is, the knowlege was such that it prefered missing a true, but low confidence, em:iier to

creating a false alarm emitter.

Reincarnation: This attribute is the percentage of recreated emitter agents, that is, emitters
which had previously ~xisted but had erroneously deleted themselves due to lack of recent
observations, with respect to the total number of emitters created. Large numbers of
reincarnated emitters indicate some portion of ELINT is unable to keep up with the data rite.
This can be caused by the data rate being too high globally so that all emitters are overloaded

or by the data rate being too high locally due to poor load balancing so that some subset of
the emitters are overloaded.

The CT control strategy was designed to prevent reincarnations. Hence, none occurred when
CT was employed on any size grid. When the CC strategy was used, only the 36 site grid was
large enough for ELINT to sufficently veep up with the input data rate so that emitters were
not erroneously deleted due to overloac

Confidence Level: This attribute is the p- age of correctly deduced confidence levels for the
existence of an emitter with respect to th: .. !l number of times such ~onfidence levels were
determined.

For each hypothesized emitter, ELINT maintains a dynamic confidence level for the existence
of the emitter based on accumulating evidence (see Section 4.1). The correct calculation of
confidence levels depends heavily on the system being able to cope with the incoming data
rate. One way to improve confidence levels was to use a large processor grid. The other was
to employ the CT control strategy.

Fixes: This attribute is the percentage of correctly-calculated positional fixes of emitters with

respect to the total number of times fixes could have been determined from the ground truth
data.

A fix can be computed whenever an emitter has seen at least two observations from differert
collection sites in the same data time interval. If, for example, an emitter is undergoing
reincarnation, it will not accumulate enough data to regularly compute fixes. Thus, the

approaches which minimized reincarnation tended to maximire the correct calculatior of fix

2-106

information.

Threats: As described in Sections 2 and 4, certain emitter and cluster events represent
immediate threats, This attribute is the percentage of recognized threats with respect to the
total number of threat events based on the ground truth data.

Fusion: This attribute is the percentage of correct clustering of emitter agents to cluster agents.
The correct computation of fusion appeared to be related, in part, to the correct computation
of confidence levels. The fusion process is also the most knowledge-intensive computation in
ELINT, and our imperfect resuits indicate the extent to which ELINT's knowledge is
incomplete.

The overall goal of the control strategy experiments was to see if it was possible to determine
strategies where the quality of the output results were relatively insensitive to grid size and load
balance but still achived significant concurrency.

We interpret from Table 6-1 that the control strategy has the greatest impact on the quality of
results. The CT strategy produced high-quality results irrespective of the number of processors
used. The CC strategy, which is much more sensitive to processing delays, performed nearly as
well only on the 36 site grid. We believe the added complexity of the CT strategy, while never
detrimental, is primarily beneficial when the interpretation system might be overloaded by high
data rates or poor load balancing.

Table 6-2 gives the simulated execution times for the ELINT runs used to derive the data in
Table 6-1, and Table 6-3 gives the total CAOS message counts for these runs.

Table 6-2: Simulated ELINT execution times for various control strategies
and grid sizes,

Grid size
Controt
strategy
4 16 k1]
NC >11.19 sec.
CcC 10.87 $.12
CT 11.80 8.10 417

Tables 6-2 and 6-3 clearly show that the processing cost of added control is far outweighed by
the benefits in its use. Far less message traffic is generated, and the overall simulated time is

reduced. Note that for the runs whose execution times are shown in Table 6-2, the input data

2-107

Table 6-3: CAOS message counts for ELINT executions with various control
strategies and grid sizes.

Grid size
Control
sirategy 4 16 3
NC >16118 msg.
cc 7378 4823
CcT 4516 4703 4616

rate was .1 seconds per ELINT time unit. Since the input data set used for these runs spanned
36 time units, the last observation was fed into the system at 3.6 (simulated) seconds. Hence,
this is the minimum possible simulated execution time for these runs.

Table 6-4 and Figure 6-1 show the quantitative effect of processor grid size when the CT
control strategy is employed. These resuits were produced with the input data rate set ten
times higher (.01 seconds per ELINT time unit) than that used to produce Table 6-2. The
minimum possible simulated execution time for the runs used to produce Table 6-4 is 0.36
seconds.

Table 6-4: Simulated ELINT execution time versus grid size for production
runs using CT control strategy.

Grid size Execution time
1 9.476 sec.
4 37
1517
16 761
3 541
36 557

As shown in Figure 6-1, the speedup achieved by increasing the processor grid size is nearly

-~
.

linear in the 1 to 25 processor site range. However, the 38 site grid was slightly siower than

2-108

5 20 Theoretical limit
(7]
[/
]
-} 17.50 —e
Q
a 16.98
< 12
$ 12.44
(=]
Q
b
2
.24
& ¢ 8
2.89 >
4 9 16 25 38
Number of CARE processing sites

Figure 6-1: The relative speedup of ELINT executions on various size CARE grids.
the 25 site grid.}4

In this last case, there was not sufficient data per' ELINT time interval to warrant the
additional processors. That is, there was not enough concurrency to exploit 36 processors.
This can be seen from Table 6-5 which gives timing results for larger data sets with more
emitters and observations during each time interval and, hence, more potential for concutrency.

Table 6-5: Simulated ELINT execution times and speedup for larger data sets.

Number of . L.site grid 36-site grid Speedup of

Qbservations execution time execution time J6overl
1040 9.476 sec, 557 sec. 1.0
2080 25.10 .948 265
4160 55.87 2,259 24.7

As shown in this table, for an input data set representing twice as many emitters and

“Becauu of the intrinsic non-determimsm of a CARE architecture, we observed variations in the solution qualities
and the run times between different runs of the same input daws set on the same size CARE grids. For such runs, the
variations in solution qualities never exceeded a fraction of s percent. However, the varitions 1a run times where as

much as five percent. This accounts for the slightly longer execution time on 16 versus 25 processors,

2-109

observations than the basic data set, the 30 site grid achived a speedup factor of 26.5 (as
opposed 10 a speedup of 17.0 for the basic data set) over a single processor. However, for a
data set four times larger than the basic data set, the speedup factor was only 24.8. This was
because this larger, and hence more concurrent, data set saturated the 36 site grid. That is, the

2080 observation data set already provided enough concurrency to fully exploit he 36 site grid.

6.3. Som: Open Questions

CAOS has been 1 suitable framework in which to construct concurrent signal interpretation
systems, and we expect many of its concepts to be useful in our future computing architectures.
Of principal concern to us now is increasing the efficiency with which the underlying CARE
architecture is vsed. . addition, our experience suggests a number of questions to be explored
in future research:

» What is the appropriate level of granularity at which to decrmpose probiems for
CARE-like architectures?

« What is the most efficient means to synchronize the actions of concurrent problem
solvers when necessary?

« How can flexible scheduling policies be implemented without significant loss of
efficiency? What 1s the impact on problum solving if alternate scheduling policies
are not provided?

o Are there efficieni mechanisms for dynamically balancing processor loads?

We have started to invesligate these questions in the context of a new CARE environment,
One of the primary difference between the original environment and the new environment s
that the process is no longer tl.e basic unit of computation. While the new CARE system s.ik
supports the use of processes, it emphasizes the use of ~~~texts which are computations with
less state than those of processes.

When a context is forced to suspend to await a value from 2 remote service, it is aborted. and
restarted from scratch later when the value is available. This behavior encourages more
fine~grained decomposition of problems written in a functional style where individual methods

are small and consist of a binding phase followed by an evaluation phase.

In addition, CARE now supports arbitrary prioritizatior of r.essages delivesed to streams. As

2]
1
-
-
Ca

a result, it is no longer necessary to include in CAOS 2 complex and expensive scheduling
strategy. Early indications are that the new CARE environment with a slightly modified CAOS
environment performs around two ofders of magnitude faster than the configuration described
in this paper. The evolution of CARE 30d CAOS based on the results of our ELINT-CAOS
-CARE experiment is described in greater detail in [16].

Acknowledgements

Our thanks to Russell Nakano, Sayuri Nishimura, 3= . ¥.,» - -1 Nakul Saraiya who helped
implement and maintain the CARE environment. Al . . wish to thank the staff of the
Symbolic Systems Resources Group of the Knowledge Sy ‘ems Laboratory for their excellent
suppori of our computing environment. We express spe graditude to Edward Feigenbaum,
His continued leadership and support of the Kno. -.,e Systems Laboratory and the
Architectures Project made it possible us to do the reported research.

2-141

I. Technology Considerations Underlying the CARE Architecture

The CARE simulation testbed can be used to simulate shared memory as well as message
passing multiprocessor architectures. For example, it has been configured to simulate a single
address space, shared global memory architecture where the processors (and their local cache
memories) are connected 1o the shared memory's controllers via a switching network. However,
the intended focus of the CARE testbed is on message passing, multiprocessor architectures
where each processor has significant local memory. This focus is based on technology

considerations -~ primarily communication versus processing costs.

The base for development of general purpose multiprocessor systems, as for computer systems
generally, is given by the design constraints and opportunities established by evolving
semiconductor design and manufacturing processes. The VLSI design medium brings a new
perspective on cost -~ switches are cheap while wires are expensive. Communication costs
dominate those associated with logic. Communication is currently the resource in shortest
supply, and it will become more of a constraint rather than less as semiconductor lithographies
decreas,

The consequence of relatively expensive communication is that performznce is enhanced if the
design establishes that whenever a lot of information has to move in a short time, it does not
have to move far. Significant locality of high bandwidth links is a design goal. Amcng the
highest bandwidth links in a computer cystem are those connecting the processor and memory.
Thus, close coupling of processors with local 1 mory is preferred.

To reduce demand on the commurications resource to sipportable leveis, local memory sizes
for multiprocessors can be expected to increase to the 100K byte level and beyond, and block
transfers between backing store and such several hundred kilobyte local memories will be used
to make the most efficient use of both memory structures and communications facilities.
Moreover, the functionallity of memory controlers will expand to include, for example,
management of request cueues, the dispatching of results, and execution of synchronization
primitives; and thus, the distinctions between a memory controller and a small, simple
processor will become blurred.

The proportion of area for a simple, high performance processor to the total area of a «:*¢
with, for example, 256K bytes of local storage can be re.so.ably estimated at around 15%.
From (i) this estimate of the incremental cost of adding a processor to a biock of memory, (11)

the significant size of the total local storage in the system, (iii) the blurring of distinctions

2-112

I ————)

between fast, simple processors and memory ccnirollers of increasing complexity, and (iv) the
tendency towards block tranfers between local memory and backing store, it follows that the
level of the storage hierarchy now labeled as "random access memory” is likely to be subsumed
by a combination of large local memories and fast, block access backing stores in

multiprocessor systems.

The performance of the available communication rescurce merits special attention in the
design of multiprocessor systems. For example, dynamic routing which selects available
inter-site links as needed is useful ir balancing load, and thus it allows more of the
communication resource of the system to je exploited throughout a computation. Cut-though
routing which makes a routing decision on the fly as a packet is received reduces buffer
requirements in the system and minimizes latency experienced in network transit. Flow control
via signalling transmission delays back to the source based on local blockage information
together with single "word” buffering and transuiission validation at each network input and
output port allows the source to complete a transmission in a time that does not depend on the
size of the network. Point to point multicast which sends (approximately) the same packet to
multiple targets using common resources to the largest degree possibie can significantly enhance
overall communication performance. A communication resource with these features provides a
multiprocessor system with “virtual busses” that are estatlished precisely as and when they are
needed.

These technology considerations have led us to focus our attention on the class of
multiprocessor hardware system architectures exemplified by CARE.

2-113

References

1. Weinreb, D. and Moon, D. (1981) Lisp machine manual, 4th ed. Artificial
Intelligence Laboratory, Massachusetts Institute of Technology.

2. Delagi, B, et al. (1986) CARE user's manual. Technical Report, Knowledge Systems
Laboratory, Stanford University.

3. Saraiya, N. (1986) Simple user's manual. Technical Report, Knowledge Systems
Laboratory, Stanford University.

4. Saraiya, N. (1986} AIDE: A distributed environment for design and simulation.
Technical Report, Knowledge Systems Laboratory, Stanford University.

5. Williams, M., Brown, H. and Barnes, T. (1984) TRICERO design description.
Technical Report ESL-NS539, ESL, Inc.

6. Aiello, N., Bock, C, Nii, H. P. and White, W. (1981) Joy of AGEing. Technical
Report, Heuristic Programming Project, Stanford University.

7. Nii, H. P. (1986) Blackboard systems: The blackboard model of problem solving and
the evolution of blackboard architectures. AI Magazine, vol. 7, no. 2, pages 38-53.

8. Nii, H. P. (1986) Blackboard systems part two: Blackboard application systems. Al
Magazine, vol. 7, no. 3, pages 82-106.

9. Erman, L., Hayes-Roth, F., Lesser, V. and Reddy, D. R., (1980) The HEARSAY-II
speech understanding system: Integrating knowledge to resolve uncertainty. ACM

Computing Surveys, vol. 12, pages 213-253.

10. Nii, H. P., Feigenbaum, E., Anton, J. and Rockmore. A. (1982) Signal-to-symbol
transformation: HASP/SIAP case study. AI Magazine, vol. 3, no. 3, pages 23-3S.

11. Lieberman, H. (1981) A preview of Actl. Artifici.i Intelligence Laboratory Memo
625., Massachusetts Institute of Technology.

2-114

12.

13.

14

15.

16.

Gabriel, R.and McCarthy, J. (1984) Queue-based multiprocessing Lisp. In
Conference Record of the 1984 ACM Symposium on Lisp and Functional

Programming. Austin, Texas.

SchoenE. (1986) The CAOS system. Technical Report, Knowledge Systems
Laboratory, Stanford University.

Haistead, R. H., Jr. (1984} MultiLisp: Lisp on a multiprocessor. In Conference
Record of the 1984 ACM Symposium on Lisp and Functional Programming. Austin,

Texas.

Denelcor, Inc. (1981) Heterogeneous element processor: Principles of operation.
Boulder, Colorado.

Delagi, B, et al. (1986) Lamina: Streams and objects for concurrency. Technical
Report, Knowledge Systems Laboratory, Stanford University.

2-115

Knowledge Systems Laboratory January 1987
Report No. KSL-87-02

A Point-to-Point Multicast
Communications Protocol

Gregory T. Byrdi
Department of Electrical Engineering
Stanford University
Stanford, CA 94305

Russell Nakanc
Department of Computer Science
Stanford University
Stanford, CA 94305

Bguce A. Delagi
Worksystems Engineering Group
Digital Equipment Corporation
Maynard. MA 01754

This work was s2upported 3: JARPA Contract F30602-55.C-50:2. NASA Ames Cunt:
NCC 2-220.51. and Bosing Contrast 264575

ST Cemdenie Eeilasreht e eeh e iles . PP -
P Graducle Feoiowsald, o I 2LAilang, 00t ol

by the EE Dept.

iG. Byrd s supported 5 :-

2-116

"§:I|

Abstract

Many setwork topologies have been proposed for connecting a iarge zum-
ber of processor-memory pairs in 3 high-performance multiprocessor system In
terms of performance. however. the commun:cations protocol decisions may be
as crucisl as topology. This paper describes a protocsi to support point-to-point
interprecessor commumicat:ons with multicass. Dyvanamuc. cut-through routing
with local flow control 1s used to provide a high-throughput, iow-latency com-
murications path between processars. [n addition. mu.i:cast transmissions are
availabie, in which copies of 3 packer are seat 1o mu.ole destinations using
common resources as much as possible. Special pack.- -ermunators and selec-
tive buffering are introduced o avoid deadlock duning nulucasts. A simulated
implementation of the protocsi is also described.

Pk

-
—
bt |

1 Introduction

Many network topologies have been proposed for connecting a large number of
processor-memory pairs in a high-performance multiprocessor system [1]. These
topologies are often evaluated in terms of the average number of hops traversed
by a packet, for example. However, the network performance may depend as
much on its communication protocol as on its physical topology. For example,
suppose the average number of hops in a network is M and the average packet
length 1s N. In a store-and-forward network, the transmission time of a packet
would be proportional to M x N. If cut-through switching is used, however,
the transmission time would be proportional to M + N, a significant difference
for relatively large values of M or V. An appropriate communications protocol,
then, is crucial if the full benefits of a topology are to be realized.

The protocol described in this paper is designed to fully utilize network
resources. Dynamic, cut-through routing with local flow control is used to pro-
vide a high-throughput, low-latency communications path between processors.
In addition, a multicast facility 1s provided, in which copies of a packet are sent
to multiple destinations, using common resources as much as possible.

Dynamic routing means that the communications channel to be used is cho-
sen at transmission time, based on what channels are available. The alternative,
static routing, would prescribe a specific channel for every destination—if that
channe] were not available, the transmission would be biocked. Dynamic rout-
ing, by adapting to current channel usage, attempts to balance the network
load. It is especially useful when the communications traffic is unpredictable or
variable over time (2]. Balancing the load allows more of the communications
resources of the system to be well used throughout a computation.

Cut-through routing (3] means that a routing decision 1s made on the fly, as a
packet 1s received, rather than first buffering the entire packet and then deciding
what to do with it.! This reduces buffering requirements in the system, since the
packet does not need to be stored at intermediate points in the transmission ?
Kernami and Kleinrock (5] demonstrate that the cut-through approach outper-
forms both circuit switching and message switching (store-and-forward) when
the communication paths are short, network utilization is relatively high, and
messages are fairly small.

Flow control, in general, is any mechanism which attempts to regulate the
flow of information from a sender to match the rate at which the recetver can
accept 1t (8. In this protocol, a transmission may be blocked and resumed in
the event of network congestion. If an output channel becomes blocked. the
sender stops sending data and halts the flow of data from upstream. VWhen the
channel becomes unblocked, the transmission ts continued from where 1t was

1A related concept 1s staged circwt switching, described in [4]

3Cut-tlrough switchung as described in [3] requires that the packet be completety buffered
if the output channel 15 blocked. In thus protocol, no further data will be received from
downstream until the channei becomes avaslable Thus, packet butf-~ing s not required

2-118

halted. The flow control mechanism is local, because actions are taken based on
the state of the downstream component rather than global information about
the entire network.

Multicast transmissions in a point-to-point network allow a packet to be
sent to multiple destinations, using common resoutces as much as possible. The
packet is replicated as needed, and subsets of the original target list are assigned
to the copies. Thus, “vittual busses” are available precisely as and when they
are needed. Selective buffering and special packet terminatots allow potential
deadlock conditions in multicasts to be detected and avoided.

The network components which define the protocol are introduced in Sec-
tion 2, and the protocol itself is described in Sections 3 and 4. Finally, Section §
describes an implementation of the protocol in the CARE simulation system.

2 Components

This section defines the network components used by the protocol. The protocol
is defined by the behavior of these components and the values that are passed
among them. Of course, these components do not necessatily correspond to
distinct physical entities in a2 machine which implements this protocol—they are
merely a useful means of specifying the functional behavior of such a machine.

The site component corresponds to a processor-memory pair in the target
machine. In particular, a site contains an operator. an evaluator, a router,
some local storage, and some network inrerface components, which are called
net-inputs and net-outputs (see Figure 1).

The evaluator is the part of the site which executes application code. The
evaluator can request network activity, but otherwise has no role in the network
behavior of the system, so very little will be said aboui 1t in this paper.

The operatoris responsible for handling system-level activity, ;ucluding com-
munication. In the target machine, it would create packets to be ser:z over the
network and accept transmissions destined for its associated processor. The
operatcr and evaluator communicate through shared local memory. The details
of this communication will not be addressed in this paper.

The site components which interface directly to the network are called net-
inputs and net-outputs. On each site, there is a net-input/net-output pair con-
nected to the operator. for local packet origination and delivery, as well as a
pair for every communication channel to the network.> We will refer to the pair
connected to the operator as the *local” net-input and net-output.

The net-input is responsible for accepting a packet, making connections (us-
ing the router) to one or more net-outputs, and sending it on its way. The
net-output is concerned with delivering the packet to a particular location, ei-
ther the local operator or the next site on the transmussion path. Note that,

3The exact number of net-inputs/net-output pairs required by a site depends on ths net-
work topology.

Fom To

i 1

Nete jumed Net.

Input Output
To . ‘ r ., Fom
Nework Router omwork
Fom v s To
eovrh Network
N Locst Locsi
Net. Net.
Nutput Input

Operator

s

Evaluator

Site

Figure 1: Components of a CARE site.

because of cut-through routing, net-inputs and net-outputs are only requited to
have enough storage for one word of a packet, rather than the entire packet.

The router connects all the net-inputs on a site to all the net-outputs. When
it receives a packet from a net-input, 1t determines the destination (or destina-
tions) and makes the connection to the appropriate net-output (or net-outputs).
Also, flow control information from the net-outputs are relayed by the router to
the appropriate net-input.

A pair of buffers, called fifo-buffers, queue packets between the operatcr and
local net-input and net-output. The upstream fifo-buffer quenes packets from

the network to the operator: the downstream queues packets from the operator
to the network.

2-120

3 Protocol Overview

2.1 Packets

Figure 2 shows the o ganization of a packet. The first part a packei is devoted
ta the target sntrses. Each entry coatains a target address, a pointe: to data
within the packet, and flags indicating the last tazget 1n the list.

Foliowing the target addresses are zero or more words of data and a one-
ward packet terminator. There are *h, . distinct packet terminators, as shown
in Table A, which are used by tne operator to determine the status of the
packet.*

Target Entry _:
Target Entry .

Target Entey n

Data

Packet “re¢.minator

Figure 2: Organization of a packet

Terminator Meaning
:end-of-packet Normal packet termination.
:abort-packet Packet is to be discarded by operzior

:local-end-of-packet | Treat as :end-of-packet. except ignore i
all packet targets other than the jocal site. |

Table A: Packet terminators.

3.2 Packet Transmission

The transm ssion path of a packe*. is shown in Figure 3 First, an evaluator
tequests a Jacket ‘ransmisston. The operator then sends the packet (through
a buffer) to the local net-input. For the momeat, assume that there s only
one target for the packet. (This 8 called a unicast transmission) The router
then decides which net-output should receive tne packe:, bascd on the tar-
get address and the availability of net-outputs, sets vp a connectioa betwern
the local net-input and the selected net-output, and vcyins the transfer of the

4As described in Subsection 4 3.

2-121

Interconnection Network

 mandut

h
i

\ e/

Net Net- N
ﬂ Input (‘v';nug__~
)

. Router)
Tocal Local
Net. Net.
Output Input

Upstream ownstream
Fifo- Fifo-
Buffer Buffer

. M. | Operator

. e

(0

Py Evaluator

kSI{8‘1 J

:

Net. Net.
(] Inpus Output)
il Router)
Cocal | Cocal
Net- ’ Nei-
Output] Input |
Upstream ownstrean}
Fifo- Fifo-
Buffer Buffer

—

!

Y Gt Operator

e

m

)

r

y Evaluator
\:Sﬁe-z .

Figure 3: Network component intercsnnections. Packets travel in the direction
marked by arrows. Flow control information fows in the opposite direction.

2-122

packet. Each non-local net-output is physically connected to a net-input on a
(logically) neighboring site. When available, this net-input accepts the packet,
and its router sends the data to the local net-output, if the target has been
reached, or to another net-ontput, if not. This continues until the target has
been reached, where the local net-output delivers the packet to the operator
(through a fifo-buffer). The operator can then perform whatever operation is
specified by the packet, such as storing the value in memory or queueing some
operation for the evaluator, for example.

If the packet has more than one target, the router may split it—that is, it
may send (essentially) the same packet to several net-outputs. This is called
a mticast ran, mission. Each transmitted packet contains a distinct subset
of the targe! s .. the original packet. The copying operation is done during
transmi..’” 4, one word at a time, as opposed to buffering the entire packet and
making copies. If sae branch of the multicast is blocked, the net-input sends
g3d characters down the other branches until valid data may be sent down all
the vaths. The pad characters are thrown away when received by a fifo-buffer.

3.3 Flow Control

Flow control information, in the form of status signals, flows in the direction
opposite to packet transrission. There are four distinct status signals, as shown
in Table B. The status signa.. are used to indicate to the upstream component
whether the packet or packet terminator can safely be rransmitted.

A ‘free signai means that the component is not :urreatly involved in a
transmission and is ready to receive data. An 'open signal is used when the
component is involved in a transmission and is ;eady to z-ce;ve the next word of
the packet. If the transmission beco:nes blocked for sume teascn, = 'wait signal
is sent upstream to temporarily halt the flow of data. F[inally, the "abort-
request signal indicates that a potential deadlock condition nas been detected
and the transmissicn may be aborted. Details about how these signals are
generated and interpreted will be presented in Section 4.

Status Meaning
‘free Available to rezeive packet.
‘opeun Packet header has been received; available
o receive more data.
‘wait Busy or network 1s blocked; do not send
more data.
'abort-request | Potential deadlrcx detectea.?

2Only a fifo-buffer may originate the “abort-request signal,

Table B- Flow-control signals.

2-123

Component Odd Phase Even Phase

Latch status from

downstream and COpen status latch to
Net-Inpvt | conditionally open data | allow status information
latch to allow data to to flow upstream.

flow downstream.

Latch status from

Open status latch to downstream and
Net-Output | allow status information | conditionally open data
to flow upstream. latch to allow data to

flow downstream.

Table C: Communication cycle phases.

A communication cycle consists of two major phases® (see Table C). During
one phase, a component latches the status signal from downstream. Based
on that signal, it may open its data latch to allow data from upstream to
flow downstream. Otherwise, it holds the previously latched data. During the
other phase, the component opens its status latch to allow status information
(pechaps modified by the component) to flow upstream. The cycles of adjacent
network components (e.g., net-inputs and net-outputs) are arranged so that one
component is latching the status information while the downstream component
is determining the status for the next cycle. Thus there cannot be a race between
the latching of data and the status signal which controls it.

3.4 Deadlock Avoidance

The existence of packet multicasts introduces the possibility of deadlock. A
packet traveling through the network acquires he use of network resources
(e.g., net-inputs and net-outputs) and simultaneously excludes the use of those
resources hy otner packets, Without special attention paid to the possibility of
deadlocks, it is possible that resources are consumed to petform rhe multicast,
out completion of the multicast is not possible because the resources acquired
are insufficient.

If only unicast transmissions were allowed, this kind of deadlock would not
occur. Assuming that a packet cannot be infimtely long, a blocked unicast
packet will eventually either acquire the network connection that it needs or
be (temporarily) stored at the local site (freeing :p any upstream resources for’

$Any necessary signal seriabzation would occur within a major phase.

=124

- Net-Input
. = Set-Queput
a - Fifo-Butler

Multicast B8

Figure 4: Example of deadlock in a multicast.

this packet). In other words. any resource that is acquired will eventually be
released.

Figure 4 illustrates an example of how multicast deadlock can arise. Sup-
pose we have two multicast transmissions, call them A and B. with common
destinations, site-1 and site-2. Suppose that one of the packets from multicast
A has already gained access to the local net-output on site-1. A packet from
multicast B has similarly gained access to the local net-output on site-2. For
multicast A to continue, it needs to gain access to the local net-output of site-2:*
for B to complete, it needs to gain access to the local net-output on stte-1 Also,
neither of the multicasts can release the resources it has already requited until
the transmission is completed. Since each multicast has acquired a resource
that the other needs, a deadlock results.

In order to recover from such a situation, the system must.

o Detect a potential deadlock condition. such as the situation described
above;

o Back out of the unsafe condition (by aborting one or more transmissions.
thateb releasing some set cf resources); and

SThe transmuss.ca cannot continue because the netanput cannoi send any wards until
all branches of the multicast are ready to receive it. Since the branch wasting for the local
net-output of site-2 is blocked, none of the branches may proceed.

2-125

o Retransmit the aborted packets later, when the network is (hopefully) less
congested.

Whenever a packet is split for multicast, the protocol requires that a copy of
the original packet (with a complete target list) be sent to the local net-output.
This packet will then be stored in a fifo-buffer. so that it may be retransmitted
in the case that the cutrent multicast must be aborted due to deadlock.

The packet terminator has two roles in deadlock avoidance. First, a fifo-
buffer can detect a potential deadlock if the packet terminator has not been
received in a “reasonable” amount of time.” Second, the packet terminator in-
dicates to all operators which received the packet what should be done with
it. For example, a multicast is aborted by sending the :abort-packet termi-
nator downstream—all operators which receive a packet with this terminator
will ignore the packet. Alsc, the operator which receives the copy of the original
packet can tell whether it needs to be retransmitted by looking at its terminator.
More details will be presented in the next section.

These actions are sufficient to prevent persistent deadlock during multicasts.
However, since there is finite storage in the system, a scenario can be constructed
in which all the storage becomes committed and no packets can be delivared.
The protocol does not prevent this type of resource exhaustion. The assumption
is made that the designed capacity of the system 1s sufficient for its applications.

4 The Protocol

This section provides a detailed description of the behavior of each of the net-
work components. First, however, we present the details of the deadlock avoid-
ance mechanisms, so that the behavior of individual components can be under-
stood in the context of an overall transmission.

4.1 Deadlock Avoidance Mechanisms

The protocol mechanisms which allow deadlocks to be detected and avoided are
as follows:

1. If a packet has multiple targets. before a router can split the packet for
multicast, the local net-output must be available. This is to insure that a
connection to the fifo-buffer is possible, so that the packet may be stored
for possible retransmission.

(a) The local net-output is sent a copy of the packet which contains a
complete target list (rather than a subset). This assures that the
packet may be retransmirted to all of its targets if the multicast is
aborted.

7See Subsection 4 1.

2-126

(b) If the local net-output is unavailable, then the packet may be sent.
but only to a single target. The intent is that a packet sent in this
fashion will either visit each target site individually, or will eventually
reach a site with an available local net-output and be multicast to
the remaining sites on the packet target list.

2. Upon receiving the front end of a packet, the fifo-buffer starts a timeout
procedure. If the timeout occurs before the packet terminator is received.
the fifo-buffer asserts the ’abort-request signal upstream on the flow
control line.

(a) When a net-input currently engaged in a multicast receives an
‘abort-request (from a downstream fifo-buffer) before it sends the
packet terminator. the net-input goes into abort mode.

(b) Net-inputs which are not involved in a multicast ignore the 'abort-

request signal; net-outputs merely pass an 'abort-request up-
stream.

3. In abort mode, the net-input performs several actions:

{a) All connected non-local net-outputs are sent the :abort-packet ter-
minator, and they are disconnected from the net-input. This signals
any downstream operator to ignore the packst when it is received.
At this point, only the connection to the local net-output is active.

(b) The 'open flow control signal is sent upstream to unblock the packet
transmission.

(c) When the packet terminator arrives at the net-input, the packet ter-
minator that is received is passed on to the local net-output. The
:abort-packet terminator causes the local operator to discard the
packet. The :end-of-packet terminator will result in retransmission,
if the original target list contained remote (not local) sites.

4.2 Generic Component Description

Next we describe the behavior of individual components. Most of the com-
ponents are desctribed as finite state machines which have input ports. output
ports, and internal state variables. The input and output ports are used to
pass packets and flow control information—packets flow downstream. flow con-
trol signals flow upstream. The ports and their functions are shown 1n Table D.
Figure 5 shows a “generic” network component, with its input and output ports.

$The sntent is to determine when the packet terminator has not arrived in a “reasonable”
amount of time. This mught actually be a timer, where the interval is some function of the
expected packet length. of 1t mught be some threshold Bmut for the number of consecutive pad
characters & Rfo-bufler will accepe. The details are not specified by the protocol documented
here.

2-127

packet-in status-out

¢ !

Component

v !

packet-out status-in

Figure 5: Generic network component.

Port i Function
packet-in | Packet data from upstream component.
packet-out | Packet data to downstream component.
status-in | Flow control from downstream component.
status-out | Flow control to upstream component.

Table D: Input and output ports.

The behavior of most of the components can be described in terms of states
and transitions between those states (i.e., a state machine). It is often useful to
illustrate the states and transitions in a state transition diagram, as in Figure 6.
The transitions are labelled with the condition used to trigger the transition.
and the status signal to be sent upstream (through the status-out port) when
the transition is made.

CONDITION/ signal

'statel 'state?

Figure 6: A state transition diagram.

4.3 Operator

The operator sends and receives packets through the network and through the
memory it shares with the evaluator Thus, 1t has more than one set of ports for

2-128

packet communication. To avoid confusion, the ports it uses to communicate
with the network are prefixed network- (e.g., network-packet-in), while the
ports used for communication with the evaluator are prefixed evaluator- (e.g..
evaluator-packet-in). Only network communication will be discussed in this
paper.

With respect to the network. both the upstream and downstream compo-
nents of an operator are fifo-buffers. The upstream fifo-buffer queues packets
from the local net-output and sends them to the operator. The downstream
fifo-buffer queues packets from the operator and sends them to the local net-
input.

Two state variables are used by the operator for network communications:

1 aetwork-buffer: Used to temporatily store an incoming packet from the
network.

2. network-buffer-status: Indicates whether the packet in the network-
buffer has been serviced ("new or ’old).

4.3.1 Sending a Packet

The operator has a queue of operations. or requests, which it services in order
of arrival. If the head of this queue is a packet to be sent out into the network,
and network-status-in is ‘free, indicating that the downstream fifo-buffer is
ready to accept a packet, the operator sends the packet (with an :end-of-packet
terminator) through the network-packet-out port.

4.3.2 Receiving a Packet

A packet arrival at the operator is signalled by the appearance of data on
the network-packet-in port. The network-status-out port is set to "open.
which signals to the upstream fifo-buffer to keep sending packet data until the
packet terminator arrives. The packet data is stored in the network-buffer.

The arrival of an :end-of-packet signifies that the packet transmussion was
successful. Network-buffer-status is set to 'mew. signifying that the data
in the temporary buffer should be looked at. At some later time, the operator
services the packet and sends a 'free signal to the incoming fifo-buffer (through
network-status-out), indicating that another packet may be received. and
network-buffer-status is set to "old, so that the packet is not serviced twice.

If the operator notices that some or all of the target addresses of the received
packet do not correspond to 1ts own address, the packet 15 sent back out 1nto
the network. This might happen for one of the following teasons:

1. During a unicast transmission. a net-input could not make 3 ¢snnection
to the desired net-output. The packet is forced into the local fifo-buffer.
so that the operator may resume the transmission at a later time. freeing
up the net-input and its upstream components.

2-129

2. A multicast transmission was aborted. The local fifo-buffer teceived a
copy of the packet with a complete target list, so that the packet could be
retransmitted in case of an abort.

A :local-end-of-packet terminator instructs the operator to accept the
packet, as in the case of :end-of-packet. but to ignore any non-local target
addresses. This ir licates that a multicast was successful, and so does not have
to be retried.

The arrival of an :abort-packet terminator instructs the operator to discard
the packet. The operator then asserts "free on network-status-out. indicating
that another packet may be received, without setting network-buffer-status
to 'new—that is, the packet data in the temporary buffer is never serviced.

4.4 Fifo-buffer

Each site has two fifo-buffers. which have identical behavior but perform slightly
different functions. One fifo-buffer is upstream with respect to the operator, and
the other is downstream.

On its output side. the upstream fifo-buffer is connected to the operator,
while the downstream fifo-buffer is connected to the local net-input. If the
queue is not empty, the fifo-buffer responds to a *free or “open signal on the
status-in port by removing the oldest item from the jueue and sending it
through the packet-out port. If a "wait signal is received. the transmission is
temporatily halted until a non-"wait signal appears.

On its input side. the upstream fifo-buffer is connected to the local net-
output, and the downstream fifo-buffer 1s connected to the operator. The fifo-
buffer needs to keep track of (1) whether the packet data and terminator have
been received and (2) whether they have been placed in the queue. The state
diagram of the input side is shown in Figure 7, and the states are described 1n
Table E. ’

State Meaning i
‘open Ready for morte data; terminator not receiveq.
wait Queue full; terminator not received.

‘done Terminator received. but not yet queued.
*done-wait | Terminator received. but queue full.
‘free Terminator queued, ready for next packet. i

Table E. Input states for fifo-buffer

The fifo-buffer begins in the ‘free state. ‘Whenever data arrives on the
packet-in port, if the queue is not full. the open state :s 2ntered and ‘open
is asserted on status-out. f the queue is full. the "wait state is entered and
‘wait is asserted: when space becomes available in the queue. the “open state

2-130

Condinon Meaning
DF Data amives, and queue full.
DNF | Data arrives, and queue not full.
F Queue full.
NF Queue not full.
TF Terminator arrives, and queue full.
TNF | Terminator amrives, and queue not full.
TQ | Terminator queued.

Figere 72 Fifo-buffer state diagram.

is entered and ‘open is asserted. If the queue becsmes full at 20y pownt in
the traasnussion, the “wait state 1S entered and the “wait signal 15 asserted on
status-out. so that nc more data wiil be sent from upsireamm When space
becomes avaiiable, the “open state is re-entered. and “open :s sent upsteeam o
tesume the flow of data.

When a packet termunator arrives. if the jueue s not {uil. the "done staze
is entered and “free is asserted on status-out. If the queus :s {uii. the "done-
wait state is entered first. which asserts “wailt unt:d space is available :n the
queue. Thea the ‘done state may be entersd. When the terminator 1s actuaily
in the quene. the “free state is entered. and the fifo-buffer :c ready to receive
auother packet.

Not shown in the state diagram is the imeout procedure mentioned 10 Sub-
section 4 1 This 1s because the details of the tumeout procedure are dependent
on the implementaticn The intent of the umeout 3 10 1ndicate when the ffo-
buffer has beea waiting an unusually iong time for the packet terminator. When

a timeout occurs, the *abort-request signal is sent upstream through status-
out. The fifo-buffer behavior then continues as described above.

4.5 Net-Input

The downstream component from a net-input is a router, but the values on the
status-in port are actually originated from a downstream net-output and are
passed through the router. If the net-input is local (connected to an operator),
its upstreamn component is a fifo-buffer; otherwise, its upstream component is
a net-output (on a logically neighboring site). The states of the net-input are
shown in Tabie F, and the transitions are illustrated in Figure 8. A state
vatriable, connection, is used to save the type of the current downstream con-
nection.

Value Meaning

first Packet teceived, but net-input not yet
conpected to the network.

'open Conaected to network and packet trans-
mission in_progress.

‘wait Downstream requested wait after trans-
mission started.

'done Terminator received, but not sent.

’last Downstream requested wait after termi-
nator received, but before it was sent.

‘abort Abort requested from downstream.

“‘fin-abort | Abort requested, and terminator received.

‘free [dle—remains in this state until the net-
work connection goes free and a new
packet is received,

Table F: States for net-input.

The net-input begins in the *free state, with all its downstream connections
free. When the front end of a packet atrives on packet-in. it is sent directly to
the router, which attempts to make the proper connection based on the packet’s
target list. If the router is successful, it makes the appropriate connections, be-
gins transmussion of the packet to the connected net-output(s), and returns one
of the follow:ng values on connection, which indicates the type of connection
that was made:

‘unicast All targets of the packet reside on a single site.

'passthru The pzciet has multiple sites in its target list, but has only been
sent to a single net-output. This type of connection indicates that the
local fifo-buffer was not available to accept a copy of the packet.

2-132

ARM/open

NW/'free

Condition Meaning
DA Data arrives.
S ‘Seek returned (try again).
C Connection ootained.
w 'Wait rec'd on status-in.

0 '‘Open rec'd on status-in.
ARM | 'Abort-request rec'd & this is a muiticast.
TR Terminator received.
WTR | Terminator and 'wait received.
NW Non-wait signal rec'd on status-in.

Figure 8: Net-input state diagram.

2-133

NW/'free

‘all-remote The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet’s target list
contained only non-local sites.

'‘some-local The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet’s target list
included the local site.

If the connection attempt is unsuccessful, because of busy channels, for ex-
ample, the router returns 'seek, which prompts the net-input to try again. If
the number of unsuccessful attempts exceeds a threshold, the router sends the
packet to the local net-output—the local operator will retransmit the packet if
any destination in the target list is not local.

A successful connection causes the net-input to enter the 'open state and
to assert 'open on status-out. At this point, several possible transitions can
occur., We will first consider the commit case, where no 'abort-request is re-

ceived and the net-input successfully delivers the packet. Later, we will consider
the abort case.

4.5.1 Commit Mode

Ignoring *abort-request for the moment, two possible events can occur: (1) the
packet terminator arrives on the packet-in port, or (2) one ot more downstream
net-outputs send 'wait over the status-in port. The ‘wait state is entered if
a ’wait signal is received: the done state is entered \f the packet terminator
is received; the ’last state is entered if both are received. Figure 8 shows the
possible transitions among these states. Whenever a 'wait is received from
downstream. ‘wait is asserted on status-out to halt the information flow from
upstream, a- ~ell. The wait condition is cleared when an 'open signal appears
on status-in. This indicates that all the downstream net-outputs are ready to
receive the packet terminator and causes a transition from 'wait to 'open, or
from ’last to 'done.

[f the net-input 1s in the "done state and ‘open 1s received from downsteeam.
the appropriate packet terminators are sent according to the *ype of connection:

'unicast or 'passthru: An :end-of-packet 1s sent to the single downstream
net-output (local or remote).

'all-remote: An :end-of-packet is sent to all the non-local connected net-
outputs; :abort-packet is sent to the local net-output, because the oper-
ator should discard the packet rather than attempt to re-send 1it.

'some-local: An :end-of-packet is sent to all non-local connected net-outputs:
:local-end-of-packet 1s sent to the {ocal net-output. so that the operator
will ignore the remote addresses in the packet’s target list.

2-134

After the packet terminator has been sent out, all connections to net-outputs
are released, the 'free state is entered, and the net-input is available to receive
the next packet.

4.5.2 Abort Mode

Abort mode is entered if an 'abort-request is received from downstream be-
fore the packet terminator is sent downstream, and the current transmission is
a multicast ('all-remote or 'some-local). ('Abort-request is ignored on a
non-multicast transmission. From this point, we will assume a multicast trans-
mission.)

If the 'abort-request is received before the packet terminator (i.e., while
in "open or 'wait), the 'abort state is entered. When the packet terminator
arrives, the net-input enters the *fin-abort state. Alternatively, the ‘abort-
packet could arrive after the packet terminator, in which case 'fin-abort is
entered directly from 'done or ‘last.

Whenever abort mode is entered, the net-input sends an :abort-packet to
all non-local connected net-outputs and disconnects them. They will, in turn,
pass the terminator downstream when possible. The only connection retained
is to the local net-output. When the local net-output is ready to receive the
packet terminator (i.e., 'open is received on status-in). the net-input passes
on whichever type of terminator it teceived. The two cases are as follows:

:end-of-packet No upstream packets have been aborted. so it is the responsi-
bility of this site to abort the downstream transmissions and to re-transmit
the packet Upon receiving the :end-of-packet, the operator will notice
some non-local addresses in the packet's target list and will send it back
out into the network.

:abort-packet Some upstteam site is aborting the multicast and will eventually
resend the packet. The operator on this site, then, is instructed to ignore
this packet.

The net-input then enters the ‘free state and releases the local connection,
ready to receive the next packet.

4.6 Router

The router is responsibie for the following:

e Determining to which net-outputs a packet should be sent, based on its
list of target addresses, the system routing strategy, and the current avail-
ability of net-outputs; and

o Creating, maintaining. and deleting the connections between a net-input
and a set of net-outputs, including transmuiting data and flow control
signals between them.

2-135

The router, unlike the other components, is not modelled as a finite state
machine—it is conceived as a priority network (implemented in combinational
logic, for example). Information about routing and active connections can be
thought of as residing in the tables shown in Table G.

Table Contents
preference-table For each logical output
direction, a sorted list of

net-outputs to be considered.
input-connection-table | For each net-input, a list of

connected net-outputs.
output-connection-table | For each net-output, its

connected net-input.
output-status-table For each net-output, its

transmission status.

Table G: Routing tables.

The first words of the packet are always the target list. As each target is
received, the router makes an appropriate connection to 1 net-output and sends
that address downstream. The routing (for each target address) takes place in
a single communication cycle,® so there is no additional delay introduced by the
router.

If there is only one target, the router makes the connection (see below) and
returns 'unicast. If there is more than one target, the router checks the status
of the local net-output. If the status is 'free, then the appropriate connections
are made and either 'all-remote or 'some-local is returned. If the local net-
output is not 'free, then a single connection is made based on the first target
on the list (ignoring the other targets), and the returned connection value is
‘passthru.

Making a connection involves determining the logical “direction” (e g.. up
or down) of the target from the local site, then determining which net-output
should be used for that direction, and finally updating the connection tables
and starting the packet transmission.

Determining the logicai direction depends on the network topology and is
usually straightforward. For example, a grid or torus requires only some arith-
metic comparisons between the target address and the local address to get Up,
Down, Right, Left, or some combination of these. A hypercube. on the other
hand, requires an exclusive-OR operation to see which bits in the destination
address are different than the local address. Equally simple operations can be
envisioned for most other network topologies, as well.

9See Subsection 3.3.

Once the logical direction is determined, the router looks in the preference-
table for a list of net-outputs to consider. This table implements the system
routing strategy and is determined when the system is built. It lists. in de-
creasing order of preference, all the net-outputs that might be used to send a
packet in a given logical direction. The router checks all the status of each of
these, in turn. untii an available net-output is found. If none is found, then the
connection fails, and ’seek is returned to the net-input.!® Examples of rout-
ing strategies which may be implemented by the routiig table are (1) try all
net-outputs, starting with the closest to the target, (2) try only one net-output
(static routing), and so forth.

During the- transmission, the router is responsible for passing flow control
information from the net-outputs to their connected net-inputs. if a net-output,
for example, asserts *wait on its status line, the router must relay that signal
to the net-input which is connected to it. Also, the router cannot pass the
net-input an 'open signal until all of its downstreamn net-outputs are in a non-
wait state. The input-connection-table, output-connection-table, and
output-status-table are useful for these types of operations.

4.7 Net-Output

The upstream component of a net-output is always a net-input. On the down-
stream side, the local net-output is connected to the fif>-buffer which delivers
packets to the operator. while a non-local net-output is connected to a net-input
on a logically neighboring site. The net-output states are listed in Table H, and
the transitions are illustrated in Figure 9.

State Meaning

‘first | Packet received, but not yet sent.

'open | Packet transmission in progress.

‘wait | Downstream requested wait.

'done | Terminator received, but not sent.

last Downstream requested wait after termi-
nator received, but before it was sent.
‘free | Terminator sent, ready to receive next
packet.

Table H: States for net-output.

The net-output 15 initially in the ‘free state. WWhen a packet arrives on
packet-in, it enters the ‘first state. If its downstream component (either a

19Note that, in the case of a multicast. partial finds (in which only a subset of the targets can
be assigned to net-outputs) must be forced to fal (by sending an :abort-packet termunator
over the connections mede thus far). or the operator would not know whuch parts of a multicast
to retransmit i1n case of an abort.

2-137

FW/’wait

NW/free

AR/abort-request

Condition Meaning
S 3
UA | Dataarrives. _
FW 'Free or 'wait rec'd on status-in.
w 'Wait rec'd on status-in.
0 ‘Open rec'd on status-in.
AR ‘Abort-request rec'd on status-in,
TR Terminator received.
WTR | Terminator and 'wait received.
AP :Abort-packet terminator received.

NW Non-wait signal rec'd on status-in.f

Figure 9: Net-output state diagram.

2-138

pet-input or a fifo-buffer) has placed 'wait on the status-im port, the net-
output asserts 'wait on status-out, which inhibits the upstream net-input
from sending anything else. When the downstream component becomes ready
to accept the packet, it will assert 'free.

When a 'free signal is received from downstream, the net-output transmits
the packet and enters the 'wait siate, asserting 'wait on status-out. The
net-output remains in the ’wait state until an 'open signal is received from
downstream.

The pet-output then enters the ’open state, sending an ’'open signal to
the upstream net-input (via the router). Things then continue much the same
as in the net-input. *Wait is entered if the downstrearn component requests
a wait and the packet terminator has not arrived. 'Doae is enteted when the
packet terminator arrives; "last is entered if a wait is requested from dowunstream
after the terminator arrives. If an ’abort-request is teceived from downstream
before the packet terminator acrives, it is relayed to the upstream net-input.
If the packet terminator has already arrived, then the 'abort-request was
premature and is ignored.

Then the net-output sends the packet terminator, when the downstream
component is ready to accept it, and enters the ’free state. When the down-
stream net-input accepts the packet terminator and responds by asserting 'free,
the net-output asserts ‘free on its status line. The upstream net-input will then
release the connection, and the net-output becomes available to receive the next
packet.

5 CARE Implementation

In this section, we provide an ovetview of the implementation of the proto-
col in the CARE simulation system. CARE is a library of functiona: modules
and intrumentation built on top of an event-driven simulator {7], which is used
to investigate parallel architectures. The typical CARE architecture is a set
of processor-memory pairs (sites) connected by some communica®ions network,
though it can also be configured to represent a system of processors communicat-
ing through shared memory. The behavior and relative performance of CARE
modules can easily be changed, and the instrumentation is flexible and useful
in evaluating the performance of an architecture or in observing the execution
of a paralle] program.

CARE is implemented using Flavors—an object-oriented extension of Zetal-
isp [8]. Roughly speaking, each component described in Section 2 is implemented
as an object (an instance of a flavor). (One notable exception is the router—its
functions and tables are assumed by the site object. rather thun implemented
as a separate component Also. the memory at a site is not explicitly repre-
sented as an object, but exists implicitly in the simulator) Associated with
each object is a set of instance variables, used to hold state information, znd

a set of methods, procedures used by the object to respond to messages from
othet objects.!! The instance variables loosely correspond to the ports and
state variables used to describe the protocol in Section 4. In particular, each of
the components which are described in terms of a state machine has a instance
variable, packet-status, which hold the current state of the component.

These objects communicate through shared structures called vias, which
represent unidirectional data paths. These are the “wires” which connect the
components’ “ports.” Asserting a value on the sending end of the via imme-
diately (in simulated time) triggers an event for the object at the other end.
Therefore, & via can be considered a zero-delay wire which can transmit any
arbitrary value (not just single bits).

The simulation is functional,!? rather than circuit-level, and event-driven,
rather than clock-driven, because cycle-by-cycle simulation of a parallel machine
would be extremely time-consuming, especially when the number of processors
is large. For this same reason, we do not wish to model the transmission of
a packet one word at a time. Instead, a packet is represented by two distinct
parts, one cepresenting the contents of the packet, and the other repressnting
the packet terminator. In the following discussion, packet will refer to the first
part (representing the front edge of a “real” packet), and packet termsnator will
refer to the terminator part.

In the simulation environment, explicit packet terminators allow us to (1)
implement the deadlock avoidancz mechanisms described earlier, and (2) model
the transmission of a packet through the network in terms of its front edge and
its back edge. In this way, if the time between the transmission of the packet
(front edge) and its terminator in the simulator is the same as the transmission
time of the packet in a real machine, we can accurately model the transmission
of the packet without explicitly representing every word.

In the following subsections, we describe how the protocol is implemented
in terms of objects, packets, ‘and packet terminators.

5.1 Operator

The time required to transfer a packet from the operator to a fifo-buffer (one
word at a time) would be propcrtional to the size of the packet. To model this,

110Objects and messages are only a software tool used by the simulator. Sending messages
between objects in the simulator has no particular correspondence to sending packets between
components in the target machune.

12The simulation is functional. in the serse that not every aspect of the hardware is sim-
ulated in detail. Some aspects are simulated by register transfer level behavior, while other
aspects have only a functional description. For example, the execution of application code by
the evaluator is not simulated at all—it is directly executed by the host machine. However,

timing information for the execution of application code, based on measurements and esti-

mates. is used to assure that the simulation is reasonably faithful to the execution of a “real”
machine.

2-140

the operator delays an appropriate time between sending a packet and sending
its terminator.

Because storage in the simulated fifo-buffer is in terms of packets, rather than
bytes'3, there will be no wait signals received from the downstream fifo-buffer.
Therefore, merely delaying for a time proportional to packet size is sufficient.

A CARE operator receives a packet as described in the protocol Note that
the time between receiving the packet and its terminator is dependent on the
size of the packet plus any delays encountered on its transmission path.

5.2 Fifo-buffer

In the simulator, the amount of storage in the fifo-buffer may be set at run
time.'* Each packet or packet terminator takes up one space in the buffer,
no matter what its actual size. In particular, the buffer cannot fill up in the
middle of accepting a packet. so the *wait state will never be entered. Thus
the operator, which feeds data into a fifo-buffer, does not have to deal with any
waiting time in the middle of transmitting a packet, as described above. This
simplifies the implementation of the protocol, at the expense of a siight loss of
fidelity in the simulation.

On the output side, however, the simulated fifo-buffer :s more complex than
the protocol indicates. If a packet is being output from the queue, the fifo-
buffer must introduce a delay between the packet and its terminator to model
the packet transit time. However, the transit time is not mertely proportional
to packet size, because downstream blocking could cause arbitrary delays in the
transmission.

The simulated fifo-buffer output transitions are shown in Figure 10. In this
case, the transitions are labelled with conditions and actions. rather than flow
control signals, Some additional instance variables for the fifo-buffer are required
to implement the output funrtion. They are:

l. transmission-status: State of packet output.
~2. delay: Accumulated time spent waiting.

3. last-wait: Event time when last 'wait was received.

Initislly, transmission-status is 'free. If the downstream component za-
quests data (status-in goes to ‘free) and the queue is not empty. the top of the
queue, which must be a packet, is placed on the packet.out via. delay is set
to zero, and transmission-status goe1 to 'busy. Also, transmission-status
is scheduied to go to “done at a tume that is proportional to packet size.

13See subsection 5.2.
4By setting the care:***buffer-size**® variable to any positive integer. or to nil. which
means “unbounded.”

2-141

OND/term
DONE/

WD/busy
Condition Meaning
F ‘Free rec’d on status-in.
w "Wait rec’'d on status-in.
0 ‘Open rec'd on status-in.
DONE | 'Done event.
WD ‘Wait rec'd and
[delay nonzero OR last-wait non-nil].
OND | Open rec'd and
[delay = 0 AND last-wait = nil].
Action Meaning
send | Send packet, schedule ‘done for
now + transmission-time.
Iwnow | Last-wait = now.
delay | Delay = delay + (now - last-wait);
Last-wait = nil.
busy | Schedule 'done for now « delay;
Last-wait = nil.
term Send terminator.

Figure 10 Implemented fifo-buffer output state diagram.

2-142

If no 'wait signals are received from downstream while the transmission is
'busy, then the transmission will be done after the packet transit time has
elapeed, and the packet terminator will be sent as soon as the downstream
component is ready to receive it.

However, if 'wait is received during 'busy, last-wait is set to the current
time and waiting is set to t. If 'open is received during 'busy, the time spent
waiting is added to delay and waiting is set to nil.

If 'open is received when transmission-status is 'done, and delay is
non-zero, then 'busy is entered again, 'done is scheduled for the current time
plus the accumulated delay, waiting is set to nil. and delay is set to zero.
Altematively, if waiting is t and delay is zero, then done has occurred in the
middle of a wait; 'busy is entered, waiting is set to nil, and 'done is scheduled
for the current time plus the difference between now and last-wait.

Finally, when 'transmission-status is "done, delay is zero, and waiting
is nil. the top item of the queue (which must be a packet terminator) will be
sent. Then transmission-status becomes “free, and the fifo-buffer is ready to
respond to the next data request.

All of this is to ensure that the time between the packet and its terminator is
dependent on the packet size plus any network delays along its path. The other
components, net-inputs and net-outputs, do not require this added complexity
on the output side. They will either maintain the currsnt time separation or
add to it due to downstream blockages, so there is no -hance of their sending
the packet terminator prematurely.

5.3 Net-Input

The main differences between the implementation and protocol concerning the
net-input stem from the fact that there is no explicit router in CARE. Each net-
input, then, communicates with the site which owns it (see Section 2), rather
than with a downstream router. The communication is done by passing Flavors
messages, rather than asserting data on vias—thus, there 1s no packet-out
instance variable, and status-in is not a via.!3

To connect to net-outputs, the net-input sends a :connect message to the
site. The site then performs the routing and makes the connections as described
in Subsection 4.6, returning either “seek ot the type of connection made. Also,
the site relays flow control information from the connected net-outputs by set-
ting status-in.

Other site methods used by the net-input include :disconnect-remote,
which releases the connections to all net-outputs except the local one, and
:send-all, which transmits a packet or terminator to all connected net-
outputs. (:Send-local and :send-remote transmit to a subset of connected

13Vias must connect two distinct objects: status-in may be connected to any group of
net-outputs at a given time. 0 USing & via is not appropnase.

2-143

NW/'free

ARM. open

Condition Meaning
DA Data arrives.
S ‘Seck returned (try again).

C Connection obtained.
w ‘Wait rec'd on status-in.
0 ‘Open rec’'d on status-in.

ARM | ‘Abort-request rec’d & this is a multicast
TR | Terminator received.

WTR | Terminator and ‘wait received.
NW Non-wait signal rec'd on status-in.

Figure 11. implemented net-input state diagram.

2-144

aet-outputs.)

There is a potential software race in the simulator, which is avoided by
adding an additional state in the net-input Rtate machine description. If the
net-input is in the 'done state and notices that none of the downstream net-
outputs has asserted ‘wait. it sends the packet terminator. However, there
might be a simulation event scheduled for the same time slot in which one of
the net-outputs receives a “wait and propagates it upstream. In a real machine.
this means that the terminator would not have been sent, byt there is no way
to “undo” the first action by the suimulator.

Thus, instead of sending the terminatot from the *donse state, the net-input
schedules a transition to the “final state two event-times later. This aliows time
for all the pomsible "wait signals to be handled during the same event. Whes the
‘final state is entered, the state of the connected net-outputs is again examined.
If none of them are blocked, the packet terminators are sent immediately (in
simulation time}, and the "free state is entered. Any "wait sigaal which could
agrive at that same instant would be too late to block the trapsmission in a real
machine. The implemented version of the net-input state machine is illustrated
in Figure 11.

5.4 Router

As mentioned earlier. there is no explicit router object in the CARE impiemen-
tation. There are. however. site functions and methods which perform routing
in response o a -connect message sent by a net-iaput.

The :find-direction method determines the logical direction of a target.
given its address. This 15 defined as a method. rather than a function. because
this operation is topology-dependent. In Flavors. we can define a specialized
site object for a particular topology by changing this one methcd and inhetiting
the remaining behavior from the generic site definition.

The setup-targets function examines the target list. makes the connections.
and copies the packet, as needed. Finaily. the make-connections funcuon is
resposible for actually setting up connections and sending the packet down-
stream.

5.5 Net-Output

In the CARE implementation of the net-sutput. there 1s no «xplicit status-
out instance variable for sending flow controi information ypstream f*s‘eh.

messages are sent to the site. as above. which updates the statys table for th

patticular net-output and relays the information o the ccnnected netanput
There are :wait. :open. :abort-request and :free methods defined for the
site for this purpose. Aiso. because packet input can come from any of the
net-inputs on the site. packet-in 1s not :mplemented as 2 via

Finally, on the initial transition into the *wait state (from 'first) the net-
output sends a :first-wait message, which updates the status table but does not
trigger an event for the upstream net-input. This prevents unnecessary simula-
tor events used to propagate the 'wait signal upstream; they are unnecessary
because the net-input will not send anything else until the net-output sends an
'open signal.

5.6 Results

Variants of this protocol have been used for many CARE simulations over the
course of several months. Though the performance has not bsen extensively
measured, the protocol appears to offer reasonable performance over a range of
network loads. Deadlocks and lost packets do not occur, even when the net-
work is extremely congested. Thus, our experience with the protocol indicates
that it cfers efficient and robust one-to-one and one-to-many interprocessor
communication.

6 Conclusion

A protocol for high-performance interprocessor communication has been pre-
sented. This protocol supports dynamic, cut-through routing with local flow
control, which allows high-throughput, low-latency transmission of packets. In
addition, multicast transmissions are allowed, in which a packet is sent to several
targets using common resources as much as possible. .

The protocol also prescribes mechanisms for detecting and avoiding deadlock

nditions due to resource conflicts during multicast. In particular, a copy of
the packet is saved before it is split, special packet terminators are used to
abort transmissions and trigger retransmissions, and random timeout intervals
are used to detact potential deadlock conditions.

Finally, the implementation of this protocol in the CARE simulation sys-
tem is described. Explicitly represerting a packet as the front edge and the
terminator allows accurate modelling of word-by-word packet transmission in
a functional, event-driven simulator. Also, the success of the implementation
indicates that this is a teasonable protocol for interprocessor commun:cation.

References

{1} Tse-yun Feng. A survey of interconnection networks. Computer, 12-27,
December 1981.

(2] V. Ahuja. Design and Analysis of Computer Communication Networks.
McGraw-Hill, 1982.

2-146

(3] P. Kernami and L. Kleinrock. Virtual cut-through: a new computer com-
munication switching technique. Computer Networks, 3:267, 1979.

(4] M. Arango, H. Badr, and D. Gelernter. Staged circuit switching. [EEE
Transactions on Computers, C-34(2):174-180, February 1985.

(5] P. Kermani and L. Kleinrock. A tradeoff study of switching systems in
computer communication networks. [EEE Transactions on Computers, C-
29:1052, December 1980.

(6] Richard W. Watson. Distributed system architecture model. In Dis-
triduted Systems—Architecture and Implementation, chapter 2, pages 10-43,
Springer-Verlag, 1981.

(7] Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd. An
Instrumented Architectural Stmulation System. Technical Report KSL-86-
36, Knowledge Systems Laboratory, Stanford University, January 1987.

(8] Sonya Keene and David Moon. Flavors. object-oriented programming on
Symbolics computers. In Common Lisp Conference. 1985.

2-1k47

Knowledge Systems Laboratory January 1987
Report No. KSL-87-07

Considerations for Multiprocessor Topologies

Gregory T. Byrdi

Department of Electrical Engineering
Stanford University
Stanford, CA 94305

Bruce A. Delagi
Worksystems Engineering Group

Digital Equipment Corporation
Maynard, MA 01754

This work was supported by DARPA Contract F30602-85-C-0012. NASA Ames Contrac1
NCC 2-220-51, and Boeing Contract W266875.

iG. Byrd is supported by an NSF Graduate Fellowship. unth additional support provid: -
by the EE Dept.

2-148

Considerations for Multiprocessor Topologies*

Greg Byrd!
Knowledge Systems Laboratory
Stanford University
Stanford, CA 94305

Abstract

Choosing a multiprocessor interconnection topology
may depend on high-level considerations, such as the
intended application domain and the expected num-
ber of processors. It certainly depends on low-level
implementation details, such as packaging and com-
munications protocols. We first use rough measures of
cost and performance to characterize several topolo-
gies. e then examine how implementation details
can affect the realizable performance of a topology.

1 Introduction—Design Con-
straints and Opportunities

The base for development of general purpose mul-
tiprocessor systems as for computer systems today
generally is given by the design constraints and op-
portunities established by evolving semiconductor de-
sign and manufacturing processes. The VLSI design
medium brings a new perspective on cost: switches
are cheap; wires are expensive. In modern micropro-
cessors, communication costs dominate those associ-
ated with logic. Power and cooling budgets are spent
driving wires and overwheimingly, chip area is ded:-
cated to wiring rather than logic [17] To an increas-
ing degree, the dominant delays are associated with
driving lines rather than the accomplishment of logic
functions per se. One implication s that, all other
things being equal, smaller, simpler processors can be
expected to have shorter operation cycles than larger.
more complex designs [18]. They are also likely to be
available 1n a more recent, higher performance base
technology.

*This work was supported by DARPA Contract F30602-
85-C-0012, NASA Ames Contract NCC 2-220-51, and Boeing
Contract W266875.

'Supported by an NSF Graduate Fellowship and by the
Stanford Dept. of Electrical Engineenng.

2-149

Bruce Delagi
Worksystems Engineering Group
Digital Equipment Corporation
Maynard, MA 01754

At the system level, the consequence of relatively
expensive communication is that performance is en-
hanced if the design establishes that whenever a lot
of information has to move in a short time, it does
not have to move far. Significant locality of high
bandwidth links is a goal. Among the highest band-
width links in a computer system is that connecting
the processor and memory. Early computer systems
separated these pieces and put a bottleneck between
them to accommodate the packagir g realities of the
time. processors were implemented with electronic
means, memoty with magnetic, and their power re-
quirements and EMI characteristics were best dealt
with separately There are new reahities now: close
coupling of processors with local memory is preferred

With these design constraints in mind, we consider
a multicomputer implementation based on a set of
processor/memory pairs connected by a communica-
tions topology. Many topologies have been proposed
(8] and have been compared in terms of theoretical
cost and performance measures (16]. We argue, how-
ever, that the realizable performance of these topolo-
gies are closely linked to details of system packaging

2 Interprocessor Connection

Topologies

Connection schiemes between processing sites can be
compated with respect to their cost and performance
as a function of the number of sites connected. For
a particular connection scheme, if the cost grows no
faster than the number of sites and the performance
grows at least as fast. that scheme can be described
as scalable A rough measure of cost 1s the number of
input-output ports required for connection. A rough
measure of performance 1s the number of links in the
topology divided by the largest number of links that
must be traversed, and thus occupied to accomphish
a transmussion, tn order to get from one node in the

network to another. This indication of the bound on
the number of independent, concurrent transmissions
we will call the concurrency of the network.

For some topologies, the concurrency of a network
may snderstate performance as actually experienced
in a given application: to the extent that there is
locality of reference in transmissions, the number of
links actually traversed may be better approximated
by a constant than some function of the number of
connected sites. Network concurrency may also over-
state performance of one topology with respect to an-
other: to the extent that the time to traverse links
is not the same for ail topologies, those that have
non-uniform link costs (perhaps due to physical dis-
tance considerstions applied to the realized lengths
of links) will deliver less performance than the con-
currency measure suggests. This is because in these
cases, logical adjacency due to high dimensionality
is merely apparent—embedding the topology in the
dimensionality of space available tends to incur just
those expenses related to physical distances that the
topology was expected to eliminate.

2.1 Topologies With Scalable Con-
currency

Several topologies are shown in Table | which have
scalable concurrency. As the number of sites is in-
creased, the network grows enough to support the
consequential- additional traffic. In fact, by this mea-
sure of performance, the last three of these four
topologies scale performance equaily well. However,
as will be described, there are other considerations to
weigh.

In the crossbar and completely connected topolo-
gies, the number of ports, a first approximation to
cost, grows quadratically with the number of nodes
in the network. Weighing cost and concurrency, then,
we might prefer the banyan and boolean k-cube (also
known as “hypercube”) topologies.

By these measures, there does not seem to be a
clear-cut choice between the banyan and the hyper-
cube. A more sophisticated measure of cost would
take into account the area required for laying out the
topology in a plane {11]. The banyan may have a
slight edge in this category!, but both layouts require

!The area required to lay out a hypercube in a plane is
0(n?) 2], where 1t is the number of processors. Since "banyan”
actually denotes a class of interconnections it 1s difficuit to
make a general statement about its layout. However, let us
consider a particular banyan network, the omega network {10].
which is logn scages of perfect shuffie connections. The per-

fect shuffle has ares O(QQ;T:) [15], so we would expect logn
perfect shuffies to require area 0(7"‘-:'—). which 1s a shightly
n

relatively long wizes, which is undesirable if link tran-
sit time dominates switching time.?

A major difference between the two topologies is
that switching and routing are centralized at the pro-
cessor in the hypercube, whereas the switching in the
banyan is distributed throughout the network. To
the extent that storage is required at the switch (as
in [3]), it becomes more economical to centralize the
switch and utilize the local storage of the processor.
For this reason, we prefer the hypercube.

2.2 Topologies With Scalable Cost

There are alternative topologies not as richly con-
nected as those just considered. The topologies in
Table 2 all have fixed degtee connectivity, 3o they all
have scalable cost as measured by port count. Un-
fortunately, none of them has scalable concurrency.
So, at least among the ten representative topolo-
gies discussed, there is no topology that has cost-
petformance characteristics intrinsically superior to
all the others.

Concutrency for the ring and the bus topologies
does not increase at all as the number of processors
increases. Given no guarantee of transmission source
to target locality, these seemn unsuitable for systems
with a large number of processors (e.g., > 100).

The perfect shufle and cube-connected cycles
(CCC) topologies emulate the O(logn) latency of the
hypercube, but the number of links is linear with
the number of processors, so concurrency does not
scale. Also, if we measure cost in terms of layout
area, the cost of the perfect shuffle (O(ﬁ'g’?)) and

ccc (O(ﬁ’};,—,;)) [13] do not scale and so will not be
considered further.

The tree. grid, and torus topologies all have fixed
degree connectivity and have the optimum O(n) area
requirement.The tree has a slightly better capacity
measure and a lower latency bound. Note, however,
that the tree provides no alternate communication
paths (useful in network balancing and defect toler-
ance) and has a bottlenecking root.3 Connections
might be added to provide alternate paths, but, as
we will see in the next section, physical link consid-
erations may make the grid or torus a better choice.

better bound than for the hypercube. Other types of banyans,
with different fan-in, fan-out, and connectivity characteristics
rught have even smaller bounds.

$See Section 3.

3\Ve might be able to deal with this by increasing the band-
width of the links as we proceed toward the root. for example
with “fat trees” (12].

2-150

3 Link Costs—Examining The
Free Lunch

Most studies of topologies assume a constant cost
for link traversals as the number of links increases.
This is a useful approximation if the time to drive
and receive link signals is constant with link length
and large compared to signal transit time on the link.
However, this is increasingly not a good assumption
both as the underlying featute size of the compo-
nent technology decreases and as we consider larger
numbers of sites in a system. Given a fixed circuit
feature size, topologies with scalable concurrency, as
discussed in Section 2.1 suffer increased link lengths
and thus longer signal transit times—with possibly
increasing drive times—as the number of processors
increases. Alternatively, given a fixed volume of cit-
cuits in these topologies and decreasing circuit feature
size, the number of processors in the system increases
but so does the ratio between link lengths and feature
size. Thus relative to the circuit delay times which
are dependent on (and decrease with) circuit feature
size, the link transit times become increasingly a more
important consideration.*

Topology has to be viewed as a dependent variable
determined principally by the packaging technology
of the system. As an example, consider the recursive-
H layout for the binary tree (Figure 1) under the
assumption that link transit time dominates switch-
ing time. Now consider the gtid 1n Figure 2, which
can be laid out in the same area. If transit times
dominate, then shorter links and more switching sites
will likely shorten the point-to-point communications
cycle time and improve the realized capacity of the
network.® Furthermore, additional data paths allow

$The dependence of communication delays on signailing
lengths as circuit feature size decreases depends on assump-
tions made on the thickness and thus the resistivity of asso-
ciated interconnects Uniform scaling leads to relative nig-
nalling times that increase quadratically with distance [19)
Detailed analysis of the equations of voltage and current in
VLSI wire implementations (including consideration of the
non-linear characteristics of signal drivers) demonstrated lin-
ear dependences {1] but were done assuming that the inter-
connect (and field oxide) thicknesses did not decrease at ail
whule all other dimensions scaled with the ciccuit feature size
of the technology {17} Another approach umagines a lueracchy
of interconnect of increasing thicknesses with distance {13] to
achieve signalling times that grow only with the logarithm of
the distance. Yet another approach accepts resistive Links but
given control over both mirumum and maximum wire lengths
and use of high impedance receivers, notes that it is possible
to counter dispersive losses with reflective voitage doubling at
the receiving end of a point to point link [9].

>The assumption made here is that the message routing is
relacively independent of the computing activities at a process-
ing site, so there is no penalty associated with being routed at
a processing site rather than a switch.

2-151

dynamic routing of messages, and additional comput-
ing resources make the grid potentially more powerful
than the tree.

Though the torus appears to suffer from extremely
long wires which “wrap around” the edges, a simple
renumbering of the processors in a grid brings each
one within two hops of its logical neighbors® (see Fig-
ure 3). Thus, we can effectively create a torus by
changing the routing algorithm of a grid. Alterna-
tively, we could keep the original torus connections
and lay out the processors as in Figure 3(b), result-
ing in links which are at most twice as long as those
for a grid. In the remainder of the paper, we will
speak of the grid bearing in mind construction of the
torus in these terms.

4 A Packaging Example

We are now faced with two topologies: one with
scalable performance—the hypercube-—and one with
scalable cost—the grid. The argumeats presented
above suggest that, all else being eqnal, the communi-
cation cycle time for the hypercube would be greater
than that of the grid, due to its long links. Even so,
the average message latency of the hypercube may
still be smaller, due to its high connectivity. To get
a better underscanding of the relative petformance of
the two systems, we should examine how they might
actually be implemented in near-future technology.

In the mid-1990’s we would expect a 0.5-um MOS
fabrication process to be available [7]. We will assume
that the complexity of our processor is comparable
to today’s typical 32-bit microprocessor. The Mi-
croVAX 78032 chip (4], for example, is implemented
in J-pm technology; it measures about 8 5 mm on
a side. Using 0.3-um technology, we could expect a
simular processor to require around 1 5 mm on a side
Let us allow 235K bytes (2M bits) of local memory
for our processor. Fujitsu's megabit RAM using 1 4-
pm technology takes 52 7 mm? [6] If the dimensions
of the Fujitsu chip are about 10 mmby 5 5 mm. then
a 0.5-um version would be 3.6 mmby 20 mm. Two
of these (since we want 2M bits) would be around
3.6 mm by 4+ mm As an approximation, then, each
processing element. including a processor, 2561 by tes
of local memory, and switchung and routing circuitey
could be expected to fit onto a 5 mm X 5 mm piece
of silicon.

Even as devices shrink. die sizes continue to grow
By the mid-90's, the state-of-the-art chips may be
as large as 15 mm on a side. Each chip would be
expected to have 400-600 I/O pads (14]. Therefore.

$Thus approach 1s attributed to R. Zippel.

]

we could put up to nine processing sites on a si. gle
die.

The dice could be flip-mounted on a silicon [5]
ot ceramic (9] subetrate with thin-film transmission
lines and integrated capacitors. In (9], the maximum
length for S-um-thick lines is around 20 cm, so we
will assume a 10x10 cm module size, on which we can
easily place up to 36 dice. We will assume on the
otder of 1000 I/O pins per module [5].

Consider first packaging a (32x32) 1024-element oc-
tal grid, in which each processor is connected to eight
neighbors. With nine processors (arranged as a 3x3
grid) on a die, 32 (bi-directional) communication links
must come off the chip through the I/O pads, so no
more than 18 pads could be used per channel. A mod-
ule can carry 324 processors, arranged as an 18x18
grid. The entire system, then, could fit on four mod-
ules (with room to spare). The communications links
from two sides of the 18x18 grid (105 bidirectional
channels) must go off-module. Thus, each channel
could use 10 pins—one pin for clock and status infor-
mation and four for data, in each direction.

Now consider a 1024-element hypercube (a “10-
cube”). To allow for more complex wiring and easter
packaging, we will assume that each die contains eight
processors, and each module will hold 32 dice, for
a total of 256 processors per module. (Extra space
might be used to provide redundant processors for
fault tolerance.) Again, only four modules are re-
quired to package all 1024 processors. Each processor
has ten bidirectional links to 1ts logical neighbors. If
the eight processors on a die are wired as a 3-cube,
then seven channels from each processor must go off-
chip. Five of these channels are connected to other
processors on the same module, but two must go off
the module. With only ~ 1000 I/O pins for 512 bidi-
rectional channels. it appears that a 1-bit combined
control/data stream 1s all that can be supported for
the hypercube communications. If we decrease the
number of processors per die to four (and possibly
add more memory), we can use separate wires for
control and data but the wires will be longer.

Note that in both cases the module pin-out is the
limiting factor for channel width, rather than the chip
pin-out. If more off-module I/O pins are available,
things will look better, but thete will still be around
a 5-to-1 ratio of the number of required off-module
channels in the hypercube as compared to the grid.
As mentioned before, the average interconnect length
for the grid will be much shorter than that for the
hypercube. Therefore, the grnid offers shorter (1 e.
faster) and wider communication paths than the hy-
percube when implemented in projected near-future
technology.

2-152

5 Beyond Topology

As the previous example indicates, the electrical and
physical characteristics of the cireuit packaging in a
system may dictate the scheme used to wire the nodes
together. In addition, the communications protocol,
that is, the actual signalling on the links are an im-
portant component of achievable performance. There
are many televant details—for example:

e Dynamic routing, selecting available links as
needed, is useful in balancing load and thus al-
lows more of communication resources of the sys-
tem to be well used throughout a computation.

e Cut-through routing, making a routing decision
on the fly as a packet is received, reduces buffer
tequirements in the system and minimizes la-
tency experienced in network transit.

e Local flow control, signalling transmission delays
back to the source based on local blockage in-
formation, together with single “word” buffer-
ing and transmission validation at each network
input and output port allows the source to com-
plete a validated transmission in a time that does
not depend on the size of the network.

e Point to point multicast, sending (approxi-
mately) the saine packet to multiple targets
using common resources to the largest degree
possible—ccupled with dynamic, cut-through
touting, flow control. and word level buffering
and transmission validation~—provides “virtual
busses” precisely a8 and when they are needed.

A point-to-point protocal utilizing these mechanisms
is described n {3].

6 Conclusion

Communications performance of practical systems
depends first of all on avatlable packaging technology
and second on protocol considerations. No topology
considered here has both scalable cost and perfor-
mance, so the topology chosen must be in the context
of the number of processors targetted. For a thou-
sand processors or so, given the assumptions on md-
1990’s technology discussed earlier, the grid (or torus:
seems an appropriate choice. The performance of the
grnid will depend on the signalling protocol and wuil
be best predicted through application simulations de-
tailed enough to relect design decisions made at that
level.

References

(1] G. Bilardi, M. Pracchi, and F. P. Preparata.
A critique and an appraisal of VLSI models of
computation. In H. T. Kung, B. Sproul, and
G. Steele, editors, VLSI Systems and Compu-
tations, pages 81-88, Computer Science Press,
Inc., Rockville, MD, 1981.

{2] G. Brebner. Relating routing graphs and two-
dimensional grids. In P. Bertolazzi and F. Luc-
cio, editors, VLSI: Algorithms and Architectures,
pages 221-231, Elsevier Science Publishers B.V.,
Amsterdam, 1985.

3] G. T. Byrd, R. Nakano, and B. A. Delagi. A
Point-to-posnt Muticast Communications Proto-
col. Technical Report KSL-87-02, Knowledge
Systeias Laboratory, Stanford University, Jan-
uary 1987.

(4 ». W. Dobberpuhl, R. M. Supnik. and
R. T. Witek. The MicroVAX 78032 chip. a 32-
bit microprocessor. Diqatal Technical Journal,
(2):12-23, March 1986.

(3] Capt.B.J. Donlan.J. F. McDonald. R. H. Stein-
vorth, M. K. Dodhi, G. F. Taylor. and
A. S. Bergendahl. The wafer transmission mod-
ule. VLSI Systeme Design, T(1) 54-38. 88-90,
January 1936.

{6] E‘ectronic News, July 1,1985.

{i] C. K. Lau, et. al. A high performance half-
micron gate CMOS process for VLSL. In Pro-
ceedings of the 1985 International Conference on
Computer Design: VLSI in Computers, {EEE,
October 1985.

i3] T Feng. A survey of interconnection networks.
Compuler, 12-27, December 1981

[9] C. W. Ho, D. A. Chance, C. H. Bajorek, and
R. E. Acosta. The thin-film module as a high-
performance semiconductor package. /B Jour-
nal of Research and Development. 26(3) 286~
206. May 1982.

(10} D. H. Lawrie Access and alignment of data in
an array processor. [EEE Transactions on Com-
pulers, C-24(12):1145~1155. December 1975.

{11} C E. Leiserson. Area-Efficient Graph Layouts
(for VLSI). Technical Report CMU-CS-80-138,
Carnegie-Mellon University, August 1980

[12] C. E. Leiserson. Fat-trees: univeral networks
for hardware-efficient supercomputing. In Pro-
ceedings of the 1985 International Conference on
Parallel Processing, pages 393-402. IEEE, 1985.

(13] C. Mead and M. Rem. Minimum propagation
delays in VLSI. In Caitech Conference on VLSI.
pages 433~439, January 1981.

(14] D. Nelsen. Personal Communication.

{15] F. P. Preparata and J. Vuillemin. The cube-
connected cycles' a versatile network for paral-
lel computation. Communications of the ACM,
24(5):300-309, May 1981.

f16] D. A. Reed 2nd H. D. Schwetman. Cost-
Performance bounds for multimicrocomputer
networks. /[EEE Transactions on Computers, C-
32(1):83-95, January 1683.

{17] C. L. Seitz. Ensemble architectures for VLSI—
a survey and taxonomy. In 1982 Conference on
Advanced Research in VLSI, MIT, January 1982.

18] C. L. Seitz. Experiments with VLSI ensemble
machines. Journal of VLSI and Computer Sci-
ence. 1{3), 1984.

{19} C L. Seitz. Self-timed VLSI systems. In Cal-
tech Conference on VLSI, pages 345-355, Jan-
uary 1979.

1 Number : Longest .

T¢, ology i of Ports | Path ! Concuctency |
“Tompletely connected . nsy Oitt n)
. Crombar i Oiny T 0O, Oy
Hanyan + Ofnlogny Qilogns Oln)
Boowean k-cube in = :* Oiviogny O 'zgn; Oin

* The number of Lnks 3 2+ 71

Table 1: Scalable Concurrency Topologizs. {n = =

.
Processors;
Sumoer Langest

Tapology 3f Paets Pith Camzurseney Arsa
ﬂ"s! J 3 ()in: Y Y
+.obal pus O.n, O i I in.
Pariect shutfle Jia Oling 2 O ==
Cubsconnected cives D oan Odagal 2 O =
Binary tree Tors Sl g L7 e ¢ 5 n

et Torus o W~ DAY Y

Table 2. Scalabie Cost Topologies 'n = # proces-
sors}

2-153

-0

o400

€1

Wy

! : |
~ —_— . 1 !
ol I ol e e R
- i — ke — — -
i pa e
5 o9lo gjd g9;c <
o) ~—
Ly - -
— oy i e’ r—
' 1 { i { | i
e i :] :] :] G b —~
o~y oy - gy o -~y
s C‘}-?-u o | T
2O | 1 g O T R S i R
c}___:“,....._u ,:..__..:.__..:
] i i
- i M ~ ™ fan B 1 - !~
- | < = ! b b g e
[N b —d wd — — —_ [

Figure 1: Recursive-H binary tree.

— ey Sy e, e — e

——-4.--_*__..__._.‘

Loo o1 11H0211:03r04/-05 0607~

onHx :#m“nwumsﬁjﬂm

20} 212223 2a s 26 2T

"'30{"‘?3[""3”"‘33 "*341"“35‘"36!"‘37"’

!

L{sﬂ-{-@ﬁsz S 3misasS 56r57

[e e

L-sos 1 He21He3 64163 6667
i e il sniiaelenelf it i)
‘—-70;-'4 7‘--71—-73—-:74»-1,.-..76-«77....

\—.—Al\-—-.—-—._a_____,_,____,___‘_,,____‘

T I LTI '-t: FPr T
e T T S & &
ttotttttttottt

iitii#iii
,.#

iiiiiitiiiiiit
G e
O G T
P O
.-r-r-r-u,-r-l--l--l--l--l--r-r

IOy
-" .-l-lnl"l-.-hlul-vlnl'-l

Figure 2: Two-dimensional grid.

— —— o — —

00; 07—'01""06!‘*02“‘05%‘3 04

ok r-rr-re- i

o7 - n-1e~zHisHisHu)

60—~67—61—66 —62‘-‘63‘-‘ 63}“64!

— — ey e ey — ———y
x

-—.q—-—--—-—-——-—-_——l——-

Figure 3 Torus {3a) and renumbered gnid (b

2-154

Knowledge Systems Laboratory August 1987

Report No. KSL-87-44

- A Dynamic, Cut-Through
Communications Protocol
with Multicast

Gregory T. Byrd, Russell Nakano, and Bruce A. Delagi

KNOWLEDGE SYTEMS LABORATORY
Department of Computer Science
Stanford University
Stanford, CA 94305

2-155

A Dynamic, Cut-Through
Communications Protocol
with Multicast*

Greg Byrd!
Department of Electrical Engineering
Stanford University
Stanford, CA 94305

Russell Nakano*
Department of Computer Science
Stanford University
Stanford, CA 94035

Bruce A. Delagi
Worksystems Engineering Group
Digital Equipment Corporation
Maynard, MA 01754

*This work was supported by DARPA Coantract F30602-85-C-0012, NASA Ames

Contzact NCC 2-220-S1, and Boeing Contract W26687S.

'Supported by an National Science Foundation Graduate Fellowship, with addi-
tional support provided by the Dept. of Electrical Engineering. Any opinions findings,
conclusions or tecommendations expressed in this publication are those of the auathot
and do no* necessarly reflect the views of the National Science Foundation.

' Author's present address: Digital Equipment Corporation, 100 Hamiltos Avenue

UCO-1, Palo Alto, CA 94301.

2-156

Abstract

This paper describes a protocol to support point-to-point interprocessor com-
munications with multicast. Dynamic, cut-through routing with local flow con-
trol is used to provide a high-throughput, low-latency communications path
between processors. In addition, multicast transmissions are available, in which
copies of a packet are sent to multiple destinations using common resources as
much as possible. Special packet terminators and selective buffering are intro-
duced to avoid deadlock during multicasts. A simulate:i implementation of the
protocol is also described.

2-157

1 Introduction

This is a revision of an eatlier paper (1], in which we presented a high-petfor-
mance point-to-point communications protocol with multicast capabilities. The
protocol described here is essentially the same, but an effort has been made
to describe the protocol in terms that more closely correspond to the intended
hardware implementation.

‘The protocol described in this paper is designed to effectively utilize network
resources. Dynamic, cut-througa routing with local flow control is used to pro-
vide a high-throughput, low-latency communications path between processors.
In addition, s multicast facility is provided, in which copies of a packet are sent
to multiple destinations, using common resources as much as possible.

Dynamic routing means that the communications channel to be used is cho-
sen at transmission time, based on what channels are then available. The alter-
native, static routing, would prescribe a specific channel for every destination—if
that channel were not availsble, the transmission would be blocked. Dynamic
routing, by adspting to current channel usage, attempts to balance the network
load. It is especially useful when the communications traffic is uapredictable or
variable over time (2]. Balaacing the load allows more of the communications
resources of the system to be well used throughout a computation.

Cut-through routing means that a routing decision :s made on the fly, as a
packet is received, rather than after buffering the entire sacket. For example, in
“virtual cut-through™ routing (3], the packet is passed on a word at a time, until
a desired channel is blocked, at which time the packet is buffered.! “Wormhole”
touting (5], on the other hand, uses flow control signals to halt the packet
flow, rather than buffering it. Cut-through routing offers reduced buffering
requirements (since the packet need not be buffered at each node) and low
latency. [6,7]

Flow control, in general, is any mechanism which attempts to regulate the
flow of information from a sender to match the rate at which the receiver can
accept it {8]. In this protocol. a transmission may be blocked and resumed in
the event of network congestion. If an output channel becomes blocked, the
sender stops sending data and halts the flow of data from upstream. When the
channpel becomes unblocked, the transmission is continued from where it was
haited. The flow control mechanism is local, because actions are taken based on
the state of the downstream component rather than g >bal information about
the entire network.

Multicast transmissions in a point-to-point network allow a packet to be
sent to multiple destinations, using common resources as much as possible. The
packet is replicated as needed, and subsets of the original target list are assigned
to the copies. Thus, “virtual busses™ ate available precisely as and when they
are needed. Selective buffering and special packet terminators ailow potential

A related concept is staged circuit smitching, described in {4].

deadlock conditions in multicasts to be detected and avoided.

The network compounents which define the protocol are introduced :n sec-
tion 2, and the protocol iteelf is described in section 3. Section 4 presents a
bypothetical hardware implementation of the protocol, while section 3 describes
the implementation in the CARE simulation system.

2 Components

This section defines the network compoaents used by the protocol. The protocol
is defined by the behavior of these components and the values that are passed
among them. Of course, these components do not necessarily cotrespond to
distinct physical entities in 3 machine which implements this protocol—they
are merely a useiul means of specifying the communications behavior of such a
machine.

The site component cotresponds to a processor-memory pair is the target
machine. In particular, a site contains an operator, an evaluator, a routsr,
some local storage, and some aetwork interface components, which are called
net-inputs and net-outputs (see figure 1).

The ecelsator is the part of the site which executes z~plication code. The
evaluator can request aetwork activity, but otherwise 1 no role in the networs
behavior of the system. so very little will be said abou: 1t in this paper.

The operator is respousible for handling system-leve! activity, including corr -
mupication. In the target machine, it would create packets to be sent over th:
network and accept transmissions destined for its associated processor. The
operator and evaluator communicate through shared local memory. The detaile
of operator-evaluator communication will not be addressed in this paper.

The site components which interface directly to the network are called net-
inputs and net-outputs. On each site, there is a net-input/net-output pair coe-
aected to the operator, for local packet origination and delivery. as weil as a
pair for every communication channel to the network.? \We wiil refer to the pur
conuected to the operator as the “local” net-input and net-output. Because
of cut-through routing, net-inputs and net-outputs are unly required o have
enough storage for one word of a packet, rather than the entire packet, where a
“word” is long esough to speaify a target site.

The roster connects all the net-inputs oo a site to all the net-outputs. Whea
it receives a packet from a net-input, it determines the destination {or destina-
tions) and makes the connection to the appropriate net-output (or net-outputs).
Also, flow control information from the net-outputs are relayed by the router to
the appropriate aet-input.

A pair of fifo-bsffers queues packets between the operator and local net-input
and net-output. The upstresm fifo-buffer queues packets from the network to

3The exact number of net-input /net-output pairs required by a site depends ca the network
topology.

From To

Network N"‘E”‘
Net- Net.
lnp“t Outpu!
o
Network Router \\.l Network
N * ro
‘F’m "’r ‘ f Network
Metwork = Local Local
N.'. N“'
OutFut | Input
Upstream
Fifo-
Buffer
T, ' '
' 4 w ’

Operator
Ly P

e
m
o
_j- valuator

‘Site)

Figure 1: Components of a CARE site,

the operator: the downstream fifo-buffer queues packets from the operator to
the nctwork.

3 The Protecol
Q.1 Packets

Figuze 2 shows the organization of » packet. The first part of a packet is
devoted to the farge? enirtes. Eack enwry specifies a target site, ~: well as other
information that will be used when the packet arrives at the site. Following the
iarget entrics are zero or more words of data and a one-word packe? terminator.
The operator determines che status or a packet by examining its terminator.3

Each word in a packet is tagged, so that target entries may be differentiated

3 Ax described in sestion 4.1

Target Entry 1
Target Entry 2

Target Entey n

Data

Packet Terminator

Figure 2: Organization of a packet.

from data. There are two types of tags used for specifying a target site—one
which indicates that there is only one target for this packet (i.e., unicast), and
one which indicates that there may be more than one (i.e., muiticast). This
allows the router to handle unicasts efficiently, without the extra mechanisms
required for muiticasts described later. There are also a tags for the other words
it a target entry, which do not specify a site,

Also, tags are used to implement several sp. sial characters required for the
protocol. There are two types of pad characiers: one for denoting a null target
entry, and one for indicating that there is no word availabie for transmission.
Finally, there are three distinct packet terminators—:end-of-packet, :local-
end-of-packet, and :abort-packet. The uses of these special characters will
be further explained as the , rotocol is described.

Table A summarizes the tags needed to implement target entries and special
characters.

Tatget Sites :unicast-sit.
:multicast.site

Pad Characters | :null-target
:null-transmission
Terminators :end-of-packet
:local-end-of-packet
:abort-packet

Table A: Tags used by ~ommnications system.

2-161

3.2 Packet Transmission

The transmission path of a packet is shown in figure 3. First, an evaluator
requests a packet transmission. For the moment, assume a unicast transmission
(only one tatget). The operator then sends the packet (through a fifo-buffer)
to the local net-input. The router decides which net-output should receive the
packet, based on the target site and the availability of net-outputs, sets up a
connection between the local net-input and the selected net-output, and begins
the teansfer of the packet. Each non-local net-output is physically connected
to a net-input un a (logically) neighboring site. When available, this net-input
accepts the packet, and its router sends the data to the local net-output, if
the target site has been reached, or to another net-output, if not. This contin-
ues until the target site has been reached, where the local net-output delivers
the packet to the cnerator (through a fifo-buffer). The operator can then per-
form whatever operation is specified by the packet, such as storing the value in
memoty or queueing some operation for the evaluator, for example.

If the packet has more than one target, the router may split it—that is, it
may send (essentially) the same packet to several net-outputs. This is called
a multicast transtaissior Tach transmitted packet contains a distinct subset
of the targets of the or <l packet.* The copying operation is done during
transmission, one wotd at a time, as opposed to buffering the entire packet
and making copies. If any branch of vae multicast is blocked, the net-input
sends :null-transmission characters down the other branches until valid data
may be sent down all the paths. The pad characters (either :null-target or
:null-transmission) are thrown away when received by a fifo-buffer.

3.3 Flow Control

Flow control information, in the form of status signals, flows in the direction
opposite to packet transmission. There are three distinct status signals, as

‘Each copy of the packet as it is tranamitted will have the same number of target entry
“slots,” but some of them will contain null entries,

Status Meaning
‘open Available to receive data.
‘wait Busy or network is blocked; do not send
more data.
'abort-request | Potential deadlock detected.”

%Only a fifo-buffer may onginate the "abort-request signal.

Table B: Flow-control signals.

2-162

{

Interconnection Network

—
! v
Net- Net. f Nete jmemd Net-

r Taput Qutput Input Output
{': Router J:l (: Router)
~Locsl Local Local Local

Net- Net. Net. Net.
Qutput Input Qutput Input

$ v

Upstream ownstres Upstream owastrean}

Fifo. ri‘ifo- «1 Fifo. f Fife.
Buller Buffer _ Buffer Buffer
) | ST

M _.l Operator M Operator
e e

m m

0 o

r r

y Evaluator y Evaluator
k‘«-aj \‘V'J

Figure 3: i.e. «ork component interconnections. Packets travel in the direction
marked by arrows. Flow control information flows in the opposite direction.

2-163

shown in Table B. The status signals are used to indicate to the upstream
component whether data can safely be transmitted.

An 'open signal is used to indicate that the component is ready to receive the
next word of the packet. If the transmission becomes blocked 1or some reason, a
'wait signal is sent upstream to temporarily halt the flow of data. Finally, the
’abort-request signal indicates that a potential multicast deadlock condition
has been detected and the transmission may be aborted.

3.4 Deadlock Avoidance
3.4.1 Unicast Deadlocks

Dally and Seits [5] have developed s deadlock-free unicast transmission scheme
for wormhole routing, based on virtual channels. Oue strategy is different-—if
progress cannot be made, a packet may be temporarily buffered at an interme-
diate site. In this way, a(least one of the packets responsible for a deadlock will
be temoved from the network, so that the other packets may make progress.
Thus, this protocol is a compromise between virtual cut-through (3], in which
the packet is always buffered when it is blocked, and wormhole routing {8}, in
which the packet is never buffered.

More specifically, if the number of connection attempts for an acceptable
net-output exceeds a threshold, then the local net-output is considered as a
potential target. If the local net-output becomes availabie before the desired net-
output, the packet is buffered, freeing its upstream channels. When the operator
examines the packet and discovers that the packet was targetted for another site,
it will retransmit the packet. Assuming packets cannot be infinitely long, either
the local net-output or an acceptable remote net-output will eventually become
free, so that deadlocks can be avoided, as long as there is sufficient space in the
site at the front edge of the transmi:sion.

3.4.2 Multicast Deadlocks

The existence of packet muiticasts introduces the possibility of another type of
deadlock. A packet iraveling through the network acquires ths use of network
resources (e.g., net-inputs and net-outputs) and simultaneously excludes the
use of thcse resources by other packes. Without special attention paid to the
possibility of deadlocks, it is possible that resources are consumed to perform
the multicast, but completion of the transmiseion is not possible because the
resources acquired are insufficient.

Figure 4 illustrates an example of how multicast deadlock can arise. Sup-
pose we have two multicast transmissions, call them A and B, with common
destinations, site-1 and site-2. Suppose that one of the packets from multicast
A has already gained access to the local net-output on site-1. A packet from
multicast B has similatly gained access to the local net-output on site-2. For

2-164

Figure 4: Example of deadlock in a mult_cast.

multicast A to continue, it needs to gain access to the local net-output of site-2®
for B to complete, it needs to gain access to the local net-output on site-1. Also,
neither of the multicasts can release the resources it has already required until
the transmission is completed. Since each muiticast has acquired a resource
that the other needs, a deadlock results.

In order to tecover from such a situation, the system must:

o Detect a potential deadlock condition, such as the situation described
above;

o Back out of the unsafe condition (by aborting one or more transmissions,
thereby releasing some set of resources); and

¢ Retransmit the aborted packets later, when the network is (hopefully) less
congested.

Whenever a packet is split for multicast, the protocol requires that a copy of
the original packet (with a complete tazget list) be sent to the local net-output.
This packet will then be sto.ed in a fifo-buffer, 3o that it may be retransmitted
in the case that the current multicast must be aborted due to deadlock.

5The transmimion cannot continue becauss the net-input cannot send any words uatil

all branches of the multicast are ready to receive it. Since the branch waiting for the local
net-output of site-2 is blocked, none of the branches may proceed.

2-165

A potential dendl'ock is detected by the fifo-buffer when the number °f con-
secutive :null-transmission chatacters exceeds a threshold. This indicates
that one or more branches of the multicast have beea blocked for a long time,
which implies the possibility of deadlock. When the threshold is exceeded, the
fifo-buffer asserts an "abort-request signal upstream, so that the router may
abort the transmission if necessary.

A muiticast is aborted by sending the :abort-packet terminator
downstream—all operators which receive a packet with this terminator will ig-
nore the packet. Also, the operator which receives the copy of the original packet
can tell whether it needs to be retransmitted by looking at its terminator.

These actions are sufficient to prevent persistent deadlock during multicasts.
However, since there is finite storage in the system, a scenario can be constructed
in waich all the storage becomes committed and no packets can be delivered.
The protocol does not prevent this type of resvurce exhaustion. The assumption
is made that the designed capacity of the system is sufficient for its applications.

4 Implementation

This section provides & detailed description of the behavior of each of the net-
work components in a hypothetical hardware implementation. Figure 5 shows a
“generic” network component, with its input and output ports. The input and
output ports are used to pass packets and fiow control information—packets flow
downatream, flow control signals flow upstream. The packet-in port accepts
data from upstream, and the packet-out port sends data downstream; the
status-in port sccepts flow control signals from downstream, and the status-
out port sends flow control signals upstream.

packet-in status-out
Component
packft-ou(itatus.in

Figure 5: Generic network component.

4.1 Operator

The operator sends and receives packets through the network and through the
memory it shates with the evaluator. Thus, it has more than one set of ports for
packet communication. To avoid confusion, the ports it uses to communicate
with the network are prefixed network- (e.g., network-packet-in), while the
ports used for communication with the evaluator ace prefixed evaluator- (eg.,
evaluator-packet-in). Only network commuaication will be discussed in this
aper.
d With respect to the network, both the upstream and downstream compo-
nents of an operator are fifo-buffers. The upstream fifo-buffer queues packets
from the local net-output and sends them to the operator. The downstream
fifo-buffer queues packets from the operator and sends them to the local net-
input.

4.1.1 Sending a Packet

The operator has a queue of operations, or requests, which it services in order
of artival. If the head of this queue is a packet to be sent out into the network,
and network-status-in is 'open, indicating that the downstream fifo-buffer
is ready to accept a packet, the operator sends the packet (with an :end-of-
packet terminator) through the network-packet-out port.

4.1.2 Receiving a Packet

A packet arrival at the operator is signalled by the appearance of a target entry
word on the network-packet-in port. The network-status-out port is set
to 'open, which signals the upstream fifo-buffer to keep sending packet words,
and the packet is stored in a temporazy buffer.

The action taken by the operator when the packet is completely received
depends on the type of packet terminator. There are three types of terminators,
shown i1n Table C, and their interpretations are given below.

The arrival of an :end.of-packet signifies that the packet transmission
was successful. The operator sends 'wait to the upstream fifo-buffer (through
‘network-status-out) until the packet is serviced (e.g.. an evaluator operation

~ Terminator Meaning
:end-of-packet Normal packet termination.
:abort-packet Packet is to be discarded by operator.

:local-end-of-packet | Treat as :end-of-packet, except ignore
all packet targets other than the local site.

Table C: Packet terminators.

is queued). When the operator is ready to receive the next packet, it asserts
‘open. .

If the operator notices that some or all of the target addresses of the received
packet do not correspond to its own address, the packet is sent back out into
the network.® This might happen for one of the following reasons:

1. Duting a unicast transmission, a net-;nput could not make a connection
to the desired net-output. The packet is forced into the local fifo-buffer,
so that the operator may resume the transmission at a later time, freeing
up the net-input and its upstream components.

2. A multicast transmission (originated locally) was aborted. The local fifo-
buffer received a copy of the packet with a complete target list, so that
the packet could be retransmitted in case of an abort.

A :local-end-of-packet terminator instructs the operator to accept the
packet, as in the case of :end-of-packet, but to ignore any non-local target
addresses (i.e., no retransmission). This indicates that a multicast was successful
and does not have to be retried.

The arrival of an :abort-packet terminator instructs the operator to ignore
the packet. In other wotds, the temporary buffer holding the packet is released
without servicing the packet.

4.2 Fifo-buffer

Each site has two fifo-buffers, which have identical behavior but perform slightly
different functions. One fifo-buffer 18 upstream with r=spect to the operator,
and the other is downstream. The fifo-buffer can be thought of as three distinct
parts: the input, the ¢uene, and the ostput.

The queue is a simple FIFO queue, with one-word input and output ports.
It responds to a 'take signal from the output by placing the oldest item in
the queue on the output ports. It responds to a 'put signal from the input by
placing the incoming data at the tail of the queue. It also presents a queye.
status signal to both the input and output, which can be 'empty, some, or
full. If the queue is empty, it sends a pad character to the ~utput in response
to a 'take signal.

On its output side, the upstream fifo-buffer is connected to the operator,
while the downstteam fifo-buffer is connected to the local net-input. The output
interprets an ’open signal on status-in by sending 'take to the queue and
sending the resulting output downstream. Nothing is removed from the queue
if status-in is "wait.

$If any of the targets are local, the nperstor keeps a copy of the packet and strips the local
targets from the retransirutt=d packet.

2-168

DNF/open DF/wait

TQ/open

F/'wait

NFfopen

Condition Meaning

DF Data arrives, and queue full.
DNF | Data arrives, and queue not full.
F Queue full.
NF Queue not full.
TQ | Terminator queued.

Figure 8: Fifo-buffer state diagram.

On its input side, the upstream fifo-buffer is connected to the local net-
output, and the downstream fifo-buffer is connected to the operator. The fifo-
buffer needs to keep track of whether the terminator for the current packet has
artived, because of the multicast abort procedure needed for deadlock avoidance,
30 we describe the input handler as a finite state machine, whose state diagram
is shown in figure 6. The labels on the arcs represent the condition which caused
the transition and the status signal asserted on status-out as a result.

The fifo-buffer input begins in the 'free state. Whenever new data arrives
on the packet-in port, if the queue is not full, the "open state is entered and
‘open is asserted on status-out. If the queue is full, the 'wait state is entered
and 'wait is amerted; when space becomes available in the queue, the ‘open
state is entered and 'open is asserted. If the queue becomes full at any point
in the transmission, the 'wait state is entered and the 'wait signal is asserted
on status-out, so that no more data will be sent from upstrearn. When space
becomes available, the 'open state is re-entered, and ‘open is sent upstream to

resumne the flow of data. '

When the fifo-buffer is in the "open state, a “time-out™ may occur, which
indicates that numbet of consecutive :null-transmission characters has ex-
ceeded a threshold. When this happens, it remains in the ’open state and
asserts 'abort-request on the status-out port.

When a packet terminator arrives, if the queue is not full, the 'free state
is entered and ’open is asserted on status-out. If the queue is full, the 'wait
state is entered first, which asserts wait until space is available in the queue.
Then the 'free state may be entered. At this point, the fifo-buffer is ready to
recsive the next packet.

4.3 Net-Input

The downstream component from s net-input is a touter, but the values on the
status-in port are actually originated from a downstream net-output and are
passed through the router. If the net-input is local (connected to an operator),
its upstream component is & fifo-buffer; otherwise, its upstream component is s
net-output (on a neighboring site).

The net-input serves as a one-word data buffer and relays flow control infor-
mation to its upstream component. It has a two-phase operation:

1. During phase one, the status latch is opened, and the current value of
status.in flows upstream. This value will either be "open or 'wait—the
touter will not allow an "abort-request signal to ever reach the net-input.
The dats latch (fed by packet-in) is closed during this phase, and the
stored value is output on packet-out.

2. During phase two, the net-input closes the status latch and examines the
latched signal. If the signal is 'open, it opens the data latch, allowing
data to flow downstream. If the signal is *wait, the data latch remains
closed. In any case, the data latch is closed at the end of this phase.

4.4 Net-Output

The upstream component of a aet-output is always a net-input. On the down-
stream side, the lucal net-output is connected to the fifo-buffer which delivers
packets to the operator, while a non-local net-output is connected to a net-input
on a logically neighboring site.

The operation of the net-output is the same as the net-input, except that
the phases are reversed. The net-output conditionally latches data during phase
one, and allows flow control signals to flow upstream during phase two. The only
other difference is that the "abort-request signal may be passed upstream.

Table D summarizes the net-input and net-output operations during the two
commupnication phases.

2-170

Component Phase One Phase Two

Latch status from

Open status latch to downstream and
Net-Input | allow status information | conditionally open data
to flow upstream. latch to allow data to

flow downstream.

Latch status from

downstream and Open status latch to
Net-Output | conditionally open data | allow status information
latch to allow data to to flow upetream.

flow downstream.

Table D: Communication cycle phases.

4.5 Router

The router connects the net-inputs and net-outputs of a site, and is responsible
for:

o Determining to which net-outputs a packet shouid be sent, based on the
packet’s target addresses, the system touting strategy, and the current
availability of net-outputs;

o Creating, maintaining, and deleting the connections between a net-inputs

and sets of net-outputs, including transmitting data and flow control sig-
nals between them; and

¢ Sending appropriate pads and packet terminators, in order to implement
the dsadlock avoidance mechanism.

For a unicast transmission, the functioa of the router is quite simpie. Upon
examining the packet tacget, it selects a net-output (possibly the local one) to
continue the transmission, based on the location of the target site relative to
its own and on the availability of net-outputs. If no connection can be made,
a 'wait sigoal is sent to the requesting aet-input uztil a net-output becomes
available. After a net-output is selected, the router maintains the connection
by sending data from the net-input to the net-output and sending flow control
signals from the net-output to the net-input. When the packet transmission is
completed. the net-output becomes available to accept another connection.

During a multicast transmiseion, the packet targeis are read one at a time,
and the connections to net-outnuts are made as the targets are read. For each

2-171

net-input the router keepe track of the type of its current connection. Thete are

three possible connecton types:

‘unicast The packet is being transmitted to only one target, either because
there was ouly a single target in the packet, or because the packet is being
“passed through” because the local net-output was not available.

‘all-remote The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet’s target list
contained only noun-local sites.

'some-local The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet’s target list
included the local site.

In the next two sections. we present further details about how coanections
are made and how multicasts are handled.

4.5.1 Making a Counection

Making & connection involves determining the logical “direction” (e.g., up or
down) of the target from the local site, then determining which net-output
should be used for that direction, and finally updating the connection tables
and starting the packet transmission.

Determining the logical direction depends on the network topology and is
usually straightforward. For example, a grid or torus requires only some arith-
metic comparisons between the target address and the local address to get Up,
Down, Right, Left. or some combination of these. A “vpercube, on the other
hand, requires an exclusive-OR operation to see which bits in the destination
address are different than the local address. Equally simple operations can be
eavisioned for most other network topologies, as well.

The protocol does not prescribe a particular routing policy for the network.
Instead, information about pomsible connections is “hard-wired” into the router
in the form of a priority network. Coaceptually, we model the priority network
as a preference table—{for every logical direction, we provide a prioritized list of
net-outputs that may be considered. Examples of routing strategies which may
be implemented in this way are (1) try all net-outputs, starting with the closest
to the target, (2) try only one cet-output (static routing), and so forth.

Given a direction, the router checks the status of each net-output in the
preference table, in tyrn, until aa available net-output is found. If pone is
available, then the connection fails, and *wait is sent upstream to the pet-input.

4.5.2 Multicast Transmissions

When a multicast packet arrives, the router makes a connection for each packet
target, one at & time. If the connection for a target has siready been made (in re-
sponse to an earlier target). the target entry is merely transmitted dowanstream

2-172

to that net-output. Whenever a target entry is transmitted, :null-target char-
acters are sent down all of the other connections. In this way, the target list
is partitioned along several paths. Whea the packet data is received by the
router, it is transmitied to all the connected net-outputs. If any of the down-
stream paths becomes blocked, :null-transmission charscters are transmitted
down all the other paths.

There is an sdditional complication for the router, however, since the local
net-output must be sent a copy of the packet to be buffered, in case the trans-
mission is aborted and must be retried. Because of the special ;unicast-site
tag, the router knows immediately whether a packet should be treated a5 a
multicast or unicast. Note, however, that since the router only looks at one
address at & time, the router cannot determine when the last targe: occurs for
a particular branch of the muiticast. Thus downstream routers may mistakealy
interpret a packet with only one target as a multicast. As a result, unpecessary
local copies of this packet will be made as it makes its way to its target site.”

Whean the first target of a muiticast is received, the router tzies to connect to
the local net-output, as well as the net-output specified by the preference table.
If the local net-output is not available, then the packet is not split at this site.
Instead, the eatire packet is sent down the remote connection. In this way, the
packet will either sequentially visit each target on the list or will finally reach &
site where it may be split.

If at any time during the connection process, s d-sired pet-output is got
available, a "wait is sent upstream to the net-input to hait the Sow of additional
targets. While waiting for a net-output to become free, the router must send
target pad characters down the established connections. Unlike in the unicast
cage, we cannot decide to divert this target to the local net-output. since then
there would be no way to tell which targets were actually serviced ané which
were diverted. Therefore, to avoid the possibility of deadlock during target
processing, the locel net-output must be sent date pad characters. so that tk
downstream fifo-buffer can time out, if appropriate, an¢ the muiticast can be
aborted.

If the transmission completes successfully (i.e.. is not aborted), the received
packet ierminator is paseed on to all the remote (noa-local) aet-outputs, but the
local net-output may be sent a modified terminator, as foilows. If the received
terminator is :abort-packet, it is sent as is, instructing the local operator to
ignote the packet. If the received terminator is :end-of-packet, the terminator
seat to t .» local net-cutput depends on the connection type:

‘all-remots An :abort-packet is sent, since the packet should not be retrans-
mittea »."d may be igonored.

"The router c:;.s% be optimized to notice whea an “all-remote connection saly uses a
single connection- . .abort-packet could thes be sent to the iocal ffo-buffer. sinze there
is 0o posmbility of < ~a-i-ck and thus no retransmusswon will be necossary.

rsome-local: A :local-end-of-packet is sent, instructing the operator to ac-
cept the packet for the local targets, but to ignore the remote targets (i.e.,
do not retransmit).

If, during the muiticast transmission, the router receives an 'abort-request
signal from the local net-output (generated by the dosnstream fifo-buffer), the
router aborts all the remote connections for the connected net-input by forcing
the net-outputs to latch an :abort-packet terminator. An 'open signal is
passed upatream to the net-input, and the transmission proceeds as if it were
a unicast transmission destined for the local coarator. When the packet ter-
minator is received, it is passed directly to the local net-output. Note that
an :end-of-packet will cause the packet to be retransmitted by the operator,$

since there are non-local targets, and an :abori-packet wil! ~ause the packet
to be discarded.

5 CARE Implementation

In this section, we provide an overview of the ir.- lementation of the protocol
in the CARE simulation system. CARE is a library of functional modules and
instrumentation built on top of an event-driven simulator [9], which i> used
to investigate parallel architectures. The typical CARE architecture is a set
of processor-memory pairs (sites) connected by some communicativns network,
though it can also be configured to represent a system of processors communicat-
inx threugh shared memory. The behavior and relative performance of CARE
modules can easily be changed, and the instrumentation is flexible and useful
in evaluaiing the performance of an architecture or in onserving the execution
of a parallel program.

CARE is implemented wing Flavors—an object-oriented extension of Zeia-
lisp [10]. Roughly speaking, each component described in section 2 is imple-
mented as an object (an instence of a flavor). (One notable exception is the
router—its functions and tables are assumed by the site object, rather than im-
plemented as a separate compcaeat. Alsc, *he memory at a site is not explicitly
represented 23 an abject, but exists implicitly in the simulator.) Associated
with each object is a set of instance variables, used to hold state information,
and a set of methods, procedures used by the object to respond to messages
from cther objects.® The instaace variables loosely correspond tc the ports 7 1d
state variables uszd to describe the protocol in section 3. In particular, each of
the compouents which are described in terms of a state machine has a instance
variable, packet-status, which hold the current state of the component.

S1f there are local targets, & copy of the packet will be kept and the local targets will be
removed from the target list upon retransmiseion.

#Objects ancd messages are only & software tool used by the simulator. Sending messages
between objects in the 'mulator has no particular correspondence to sending ,ecksts between
components in the target machine.

2-17h

These objects communicate through shared structures called vias, which
represent unidirectional data paths. These are the “wires” which connect the
components’ “ports.” Asserting a value on the sending end of the via imme-
diately (in simulated time) triggers an event for the object at the othe.r end.
Therefore, a via can be considered a zero-delay wire waich can transmit any
arbitrary value (not just single bits).

The simulation is functional,!? rather than circuit-level, and event-driven,
rather than clock-driven, because cycle-by-cycle simulation of a parallel machize
would be extremely time-consuming, especially when the number of processors
is lacge. For this same reason, we do not wish to model the transmission of
a packet one word at a time. Instead, a packet is represented by two distinct
parts, one representing the contents of the packet, and the other representing
the packet terminator. In the following discussion, packet will refer to the first
pact (representing the front edge of a “real” packet), and packe? terminator will
refer to the terminator part.

In the simulation environment, explicit packet terminators sllow us to (1)
implement the deadlock avoidance mechanisms desctibed eatlier, and (2) model
the transmission of a packet through the network in terms of its front edge and
its back edge. The transmission time of a packet is the time between arrival
of ita front edge ard its terminator. In this way, we can accurately model the
transr “iseion of the packet without explicitly reptesenting every word.

In the following subsections, we describe how the protocol is implemented
in terms of objects, packets, and packet terminators.

5.1 Operator

The time required to transfer a packet from the operator to a fifo-buffer (one
word at a time) would be proportional to the size of the packet. To model
this, the operstor delays an appropriate time between scuding a packet and
sending its terminator. When the transmission time of the packet has elapsed,
the terminator is sent as soon as an 'open signal is received from the fifo-
buffer. This is a simplified model, since there can be arbitrary delays involved
in freeing up space in a full buffer, but the fifo-buffer output module enaures
that the proper space is inserted between packet and terminator in the neiwork.

A CARE operator receives a packet as described in the protocol. Note that
the time betweer receiving the packet and its terminator is dependent on the
size of the packet plus any delays encountered on its transmission path.

19The simulation is functional, in the sense that not every aspect of the hardware is sim-
ulated in detail. Some sspects are simulsted by register transfer level behavior, while other
aspects have only & functional descrip’ion. For example, the communications system is simu-
Iated in terms of register transfers, while the execution of (uniprocessor) application code by
the evaluator is not simulated at all—it is directly executed by the host machine. However,
timing information for the execution of application code, based on measurements and esti-

mates, is used to sasure that the simulation is reasonably faithful to the execution of a * real”
machine.

2-175

5.2 Fifo-buffer

In the simulator, the amount of storage in the fifo-buffer may be set at run
time.!? Each packet or packet terminator takes up one space in the buffer, no
matter what its actual size.

Since we do not simulate each word of a packet transmission, the fifo-buffer
cannot count pad characters to detect a potential muiticast deadlock. Instead,
the simulated fifo-buffer uses a time-out procedure: when the packet is received,
the fifo-buffer schedules a wake-up event at random time in the futuze, based on
the packet size (for example, between 1.5 and 3 times the packet transit time).
If the packet terminator has not arrived by that time, the fifo-buffer asserts
‘abort-request. This is not a viable option for actual implementation, since a
real packet header contains no information about the packet size.

On its output side, the simulated fifo-buffer is more complex than the pro-
tocol indicates. If a packet is being output from the queue, the fifo-buffer must
introduce a delay between the packet and its terminator to model the packet
teapsit time. However, the transit time is not merely propertional to packet size,
because downstream blocking could cause arbitrary delays in the transmission.

The simulated fifo-buffer cutput transitions are shown in figure 7. In this
case, the transitions are labelled with conditions end actions, rather than flow

control signals. Some additional instance variables for the fifo-buffer are required
to implement the output function. They ace:

1. transmission-status: State of packet output.
2. delay: Accumulated time spent waiting.

3. last-wait: Event time when last 'wait was received.

Initially, transmission-status is 'free. If the downstream component re-
quests dats (status-in goes to ’open) and the queue is not empty, the top of
the queue, which must be a packet, is placed on the packet-out via, delay is set
to zero, and transmission-status goes to 'busy. Also, transmission-status
is scheduled to go to *done at a time that is proportional to packet size.

If no 'wait signals are received from downstream while the transmission is
'busy, then the transmission will be done after the packet transit time has
elapsed, and the packet terminator will be sent as soon as the downstream
component is ready to receive it.

However, if 'wait is received duriny, 'busy, last-wait is set to the current
time and waiting is set to t. If 'open is re:eived during 'busy, the time spent
waiting is added to delay and waiting is set to nil.

If open is received when transmission-status is 'done, and delay'is
non-zero, then *busy is entered again, 'done is scheduled for the current time

11By setting the care:***buflfer-sise®** variable to any positive integer, or to nil, which
means “unbounded.”

2-176

F/send

W/lwnow ONDIrerm

DONE/

O/delay WD/busy

Condition Meaning
F ‘Free rec'd on status-in.
w 'Wait rec'd on status-in.
0 ‘Open rec'd on status-in.
DONE | 'Done event.
WD | 'Wait rec'd and
[delay nonzero OR last-wait non-nil).
OND | 'Openrec'd and
[delay = 0 AND last-wait = nil}.

Action Meaning

send | Send packet, schedule ‘done for
now + transmission-time.
Iwnow | Last-wait = now.

delay | Delay =delay + (now - last-wait);
Last-wait = nil.
busy | Schedu'e 'done for now + delay;
Last-wait = nil.
term Send terminator.

Figure 7: Simulated fifo-buffer output state diagram,

2-177

plus the accumulated delay, waiting is set to nil, and delay is set to zero.
Alternatively, if waiting is ¢ and delay is zero, then 'done has occurred in the
middle of a wait; 'busy is entered, waiting is set to nil, aad *done is scheduled
for the cutreat tima plus the difference between now and last-wait.

Finally, when transmission-status is *done, delay is zero, and waiting
is nil, the top item of the queue (which must be a packet terminator) will be
sent. Then transmission-status becomes free, and the fifo-buffer is ready to
respond to the next dats request.

All of this is to ensure that the time between the packet and its terminator is
dependent on the packet size plus any network delays along its path. The other
components, net-inputs and net-outputs, do not require this added complexity
on the output side. Since they merely pass packets and terminators from one
point to the next,'? the flow control signals ensure that they will maintain the
proper separstion between a packet and its terminator.

5.3 Net-Input, Net-Output, and Router

As mentioned eatlier, the router is not an explicit object in the simulation.
Instead, the sste object performs its operations. Net-inputs and net-outputs
communicate with it by passing messages (in the Flavors sense) rather than
making assertions on vias. Likewise, the site updates net-input and net-output
“ports” by setting instance variables.

To connect to net-outputs, the net-input sends a :connect message to the
site, which then attempts to make the appropriate connections. The result is
stored in the connection instance variable of the net-input. If no connection
could be made, 'seek is returned; otherwise, the type of connection (unicast, all-
temote, or some-local) is returned. If only some of the desired connections could
be made, the unsuccessful targets are placed in the pending-connections in-
stance variable. The net-input keeps sending :connect messages to the site
until ail the targets are satisfied.

Other site methods used by the aet-input include :disconnect-remote,
which releases the connections to all net-outputs except the local one, and
:send-all, which transmits a packet or terminator to all connected net-
outpuis. (:Send-local and :send-remote transmit to a subset of connected
net-outputs.)

Similarly, the net-output uses the :wait, :open, and :abort-request meth-
ods to relay flow control signals to the site, which then mai.>s the appropriate
asgertions to the connected net-input.

In the touter, the :find-direction method determines the logical direction
of a target, given its address. This is defined as a method, rather than a func-
tion, because this operation is topology-dependent. In Flavors, we can define

12This is in contrast to the fifo-buffer, which must insert the packet and terminator into
the network at the proper ume.

2-178

a specialized site object for a pacticular topology by changing this one method
and inheriting the temaining behavior from the generic site definition.

The setup-targets function examines the target list, makes the connections,
and copies the packet, as needed. Finally, the make-connections function is
resposible for actually setting up connections and sending the packet down-
stream.

5.4 Results

Variants of this protocol have been used for many CARE simulations over the
course of several moanths. Though the performance has not been extensively
measured, the protocol appears to offer reasonable performaance over & range of
network loads. Deadlocks and lost packets do not occur, even when the net-
work is extremely congested. Thus, our experience with the protocol indicates
that it offers efficient and robust one-to-one and one-to-many interprocessor
communication.

6 Conclusion

A protocol for high-performance interprocessor commuanication has beea pre-
sented. This protocol supports dynamic, cut-through routing with local flow
control, which allows high-throughput, low-latency transmission of packets. In
addition, multicast transmissions are allowed, in which a packet is sent to several
target. using common resources as much as possible.

The protocol also prescribes mechanisms for detecting and avoiding deadlock
conditions due to resource conflicts during multicast. In particular, a copy of
the packet is saved before it is split, special packet terminators are used to
abort transmissions and trigger retransmissions, and random timeout intervals
are used to detect potential deadlock conditions.

Finally, the implementation of this protocol in the CARE simulation sys-
tem is described. Explicitly representing a packet as the front edge and the
terminator allows accurate modelling of word-by-word packet transmission in
a functional, event-driven simulator. Also, the success of the implementation
indicates that this is a reasonable protocol for interprocessor communication.

References

(1] Gregory T. Byrd, Russell Nakano, and Bruce A. Delagi. A Point-to-point
Multicast Communicstions Prowocol. Techunical Report KSL-87-02, Knowl-
edge Systems Laboratory, Stanford University, January 1987.

(2] V. Ahuja. Design and Anslysis of Computer Communication Networks.
McGraw-Hill, 1982.

2-179

(3] P. Kernami ahd L. Kleinrock. Virtual cut-through: a new computer com-
munication switching technique. Computer Networks, 3:267, 1979.

(4] M. Arango, H. Badr, and D. Gelernter. Staged circuit switching. [EEE
Transactions on Compsters, C-34(2):174-180, February 1985.

(5] William J. Dally and Charles L. Seitz. Deadlock-free message routing in
" multiprocessor interconnection networks. /[EEE Transactions on Comput.
ers, C-36(5):547-353, May 1987. :

(6] P. Kermani and L. Kleinrock. A tradeoff study of switching systems in
computer communication networks. /EEE Transactions on Computers, C.
29:1052, December 1980. ’

(7] William J. Dally. Wire-efficient VLSI multiprocessor communication net-
works. In Paul Losleben, editor, Advanced Research in VLSI—Proceedings
of the 1987 Stanford Conference, pages 391—415, MIT Press, 1987.

(8] Richard W. Watson. Distributed system architeciure model. Ia B. W,
Lampson, M. Paul, and H. J. Siegert, editors, Distributed Systems -~
Architecture and [mplementation, chapter 2, pages 10—43, Springer-Verlag,
1981.

(9] Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd. A:
Instrumented Architectural Simulation System. Technical Report KSL-8:.-
368, Knowledge Systems Laboratory, Stanford University, January 1987.

(10] Sonya Keene and David Moon. Flavors: object-oriented programming c=
Symbolics computers. In Common Lisp Conference, 1985.

2-180

Knowledge Systems Laboratory January 1988
Repcrt No. KSL-88-10

A Performance Comparison of
Shared Variables vs. Message Passing

Gregory T. Byrd

Department of Electrical Engineering
Stanford University
Stanford, CA 94303

Bruce A. Delagi

Digital Equipment Corporation
N aynard, MA 01754

Submitted for publication to:

ISI Supercomputing Conference
May 1988

2-181

A Performance Comparison of
Shared Variables vs. Message Passing®

Gregory T. Byrd Bruce A. Delagi
Stanford University Digital Equipment Corporation
Stanford, CA 94305 Maynard, MA 01754

Abstract

in this paper, we cxamine the performsance of & parallel application imaplemented in both
shared vaziable and messsge passing styles. Our putpose is to illuminate the differences between
the progzamming taodels and show how these differences affect the performance of the programs
when :xecuted om systems incorpotsting hundreds of processing elements.

First, we present the programming models used for the implementations. Thea we examine
the costs associated with each model, focusing on interprocessor communication sad synchro-
pisation. Strategies for minimising dats communications costs are discussed and confirmed
through simalation. Also, architectural features are identifted which have a substantial impact
on shared variable and messsge passing performance.

1 Concurrent Programming Models

Though there is a wide range of concnrrent programming models, they can usually be classified ac-
coeding to the primary means of communicating between processes. If communication is performed
by passing values, we call it a message passing model. If communication is done by reading and
writing shared memory locations (i.e., passing references), we call it a shared variable model.

In this section, we present the details of what we will take as our working example of each
of these models. There are certainly other possible models, but they will, for the most part, be
mixtures or specializations of the two models presented here.

1.1 The Shared Variable Model

We take thread-oriented shared variables to be our primary example of a shared variable model.
All communication and synchronization is performed thzough reading and writing shared variables.

*This material is based o wotk supported under & National Science Foundation Graduate Fellowship. Any
opinions, findings, conclusions, or recommendstions expressed in this publication are those of the authors and do not
necessarily reflect the views of the National Science Foundstion. This work was also supported by DARPA Contract
F30602-88-C-0013, NASA Ames Contract NCC 2-220-S1, and Bocing Contract W266875.

The authors may be contected at Xnowledge Systems Laboratory, 701 Welch Road, Bldg. C, Pslo Alto, CA,
94304; or through clectronic mail st Byrd@Sumez-Aim . Stanford. EDU or Delegi@Suniex-Aim Stanford. EDU.

2-182

1 CONCURRENT PROGRAMMING MODELS

There is one process, or thread of control, for each physical processor involved in the computation,
hence the term “thread-oriented.”

Various forms of synchronization based on shared variables may be used, including spin locks,
semaphores, monitors, barriers, and so forth. In addition, it may be possible for oae processor
to interrupt another, passing it an interrupt vector which may contain self-referential values (e.g.,
integers) or references.

When reading or writing global (shared) data, the processor is stalled until a response from the
memory system is received.! It is presumed that access to global memory is short, compared to
the process switch time, so it is more efficient to stall processing than to schedule another process.
This means that only one memory request is pending for a given processor at any time.

We do not assume any automatic caching mechanism for shared data, since maintaining cache
coherency for large numbers of processors is problematic, and since we want to study alternative
compiler- and programmer-directed caching techniques. Instead, globally shared read/write data
is declared to be non-cacheable (as in the RP3 parallel computer (10]). Each processor has local
(private) memory, and block reads and writes are provided for efficient memory access.

1.2 The Message Passing Model

As representative of message passing styles of computation, we present the object-oriented streams
model, &8 embodied in the LAMINA programming language {5]. Objects encapulate local state vari-
ables and procedures which manipulate them in response to messages from other objects. Streams
represent queues of messages—they are generalizations of futures (6}, in that a reference to a stream
may represent the promise of either a single value or a collection of values to be computed.

The only entities which may be passed through streams are self-referential values (e.g., numbers,
symbols, and code bodies), references to streams, and structures, which may have arbitrary internal
structure but otherwise contain only self-referential values (as above) or references to streams.
Internal structure involving shared substructure is preserved as it is passed between objects.
Synchronization is realized by messages arriving on a stream. Each object has an associated
self-stream. Whenever a message arrives on an object’s self-stream, an execution context for the
object is created and control is transferred to the procedure dedicated to handling that message.
Execution is, for the most part, taka to completion and is data-driven, although mechanisms for
demand-driven computation are also provided.

1.3 References vs. Values

In shared variable systems, a reference (or address) is usually given to a location where shared data
may be accessed—if the data is needed, it may de read from that location. This is particularly
efficient if the needed data is only a piece of a large structure, or if the data associated with the

! This zestriction maintains the serialisation of memory accesses from a single processor. It is particularly impottant
to guarantee that pending writes have completed: consider the initial conditions a=0, b=0 and the operations aa:sa+1,
bh:=b+1, ¢:5"an greater tham or equal bb” if a is the same cell as aa and b is the same cell as vd.{11]

2-183

2 COST MODEL

reference need not be accessed at all, but perhaps is passed in turn (as a reference) to another
computation which may require the data.

Message passing systems, on the other hand, usually communicate through passing the data
itself, If all (or most) of the data is needed for the computation, then this is more efficient, since
extra network accesses are not needed. Arbitrary structures, such as graphs, may be passed,
but some effort is required on both the sending and receiving ends to linearize the structure for
transmission over the network.

Both paradigms, however, recognize the necessity to deal with exceptions to the usual case. In
the shared variable model, block transfers may be used for efficient access to vectors of data—Iless
regular structures, however, must still be accessed by “reference chasing.” Ia the stream-based
model, data may be encapsulated on a stream, and the reference to the stream passed around until
the dats is actually needed.

2 Cost Model

In this section, we examine the costs associated with implementations of the two programming mod-
els discussed above. OQur goal is to identify the costs of program execution in terms of parameters of
the underlying multiprocessor system. We then discuss which costs dominate in “efficient™ parallel
programs, what can be done to minimize the performance degrada’ion due to these costs, and how
communication and synchronization overhead relate to overall completion time for a program.

2.1 Ewvaluation Time

Evaluation time is the term we use to refer to the amount of time spent execting spplication-level
code. If we assume that the same fundamental algorithm is being used in both programming styles,

then the amount of application-level work to be done is the same, so the evaluation time should be
equivalent.

2.2 Network Communication

We define network communication time as the time it takes for a processor to make data available to
another processor. In particular, it is not the time for one process to accept data from another—that
will be discussed in the next section.

First, we will introduce a few parameters which characterize the communications network. 37e
assume that the network employs some sort of cut-through routing protocol, such as those described
in [7,3,1].

We define the parameter W as the number of cycles it takes to transfer one word over a network
channel. Therefore, in the absence of contention, the time to transfer an L-word message? over D

3L represents the amount of data 1n the message—it does not include the target sddress.

2-184

2 COST MODEL

channels (hops) is W - D + W . L, assuming & one-word target address.’
If D gug represents the average number of hops traversed by a message and Lqypg is the average
length, in wo:ds of a message, then the average network delay is given as

Tw:W-Daug-}-W-ngg.

Ia our thread-oriented shared variable model, accessing globally shared data always causes
network activity.* As we mentioned earlier, reads and writes cause the processor to block uatil an
scknowledgement is received from the memory medule. Every shared variable access, then, requires
a round trip through the network.

A one-word read requires sending out a target address (W - Dgyg cycles) and receiving a two-
word (dsta plus target) response, (W - Dgog + W cycles). A write is the same, except that the
request takes two words, and the response takes only one. Therefore, a one-word read or write
takes 2W - Dc.g+ W cyclee.

Block reads and writes are similar. A block read request consists of sending an address and a
count (2 words) and receiving L words (plus a target address) in return. Though a block write
does not require a count, since that is supplied implicitly by the number of values it supplies, we
assume taat one is supplied explicitly, to handle exceptions and the like. If Lqyg is the average
block size, ihen the average memory access time is

TSV, = 2W -Daog + W - Lagg + W.

In a message passing envircnment. however, we are required to pass values with arbitrary
internal structure. These values must be encoded into a linear form prior to network trapsmission.
We model this encoding time as a fixed overhesd, T, plus a constant number of cycles per word,
¢ For the purposes of this paper, we assume that the encoding operation must be completed

before the packet is transmitted (although this is not strictly necessary), so the average network
delay for a messaye is

T,?é% =W.- Dggg +W. Lavg + (TC + CLavg)-

2.3 Process Communication

As mentioned in the previous section, network communication time does not represent the time
needed to commnunicate data between processes. One process must send and the other receive,
and there must be coordination between these two phases. (We are not implying synchronous

‘In o store-and-forward network, the entire packet must be transmitted st each hop, so the latency would be
D-W -(L+1), again with one-word target address.

‘This is & consequence of not modelling automatic caching of data—shared dats must always be read from and
writt=a to & memory module. In particuler, writes to shared data do not incluue updsting copies of that dats in
othez processots’ local memoey.

*We model encoding/decoding as s linear cost, hecause we envision an algo.ithm which uses forwarding pointers

{9] to check for shared structures, instead of hashing, which is not necessarily linear, depending on the occupancy of
the hach table.

~o
'
-
X0
A¥a]

2 COST MODEL

communication, in which the sender/writer waits for the receiver/reader to retrieve the data, but
are merely poting that the sending must come before the receiving, and the receiver usually is
notified when data becomes available.)

In the object-oriented model, when a message arrives at its target processor, its data is placed
on the destination stream, and the object waiting on that stream must be invoked with the proper
method. The time required to place a messege on a stream is the gueseing time, Tg. The time
required to awaken the necessary object is divided into the dispatch time, Ty, which involves
selecting the proper object and method, and the process switch time, Tsuw-

Therefore, the total (average) time for communication between objects is

MP
TME,

!

Tzs +(Te+ CLg,g) + (Tq + T‘ + Tow)
WD¢'g+ w- L¢9g+ 2c- Lg.g
+2Tc + Tg-}- Td+ Tse-

In the shared variable model, communication between two process (A and B) generally takes
the following form: A writes a value; A sets a lock; B reads the lock; B reads the data. Thus,
comrrunication time depends on what sort of lock is being used. We will consider spin locks at this
tiwe, but the analysis may be exteaded to other synchronization policies.

To estimate the cost of setting and reading a spin lock, consider the optimistic case, where the
read is setviced by the memory module just after the write is completed. It takes WDgog + W
cycles for the write request to arrive at the memory and WDgyg ~ W cycles to get the result to the
reading process, so the overhead time represented by access toaspinlock,T&is2WD”,+2W.

Thus, the average process communication time using shared variables and spin locks is

sV _ A\ A\ 4
Tome = 2T+ T3V,
= 6WD¢.§ + 2WL¢'Q + IW.

2.4 Improving Process Communication

One way to lessen the impact of interprocess communication delays is to make efficient use of the
network resources—transfer large messsges whenever feasible. When L gug is large, in comparison to
the other costs, the figures for average latency between processors become approximately 2W Lgpg
for shared variables and (2¢ + W)L gey for message passing.

Thus, when Leyg is large, relative to Dgyg, and when ¢ = ;W, the latency for interprocess
comrounication is the same for shared variable and message passing environments. Notice, however,
that the only large “messages” that may be passed in a shared variable system are blocks (vectors)
of self-referential values. These structures do not need to be coded, even in a message passing
environment, since they are already linear. Thus, if this special case can be recognized by the host
machine, coding can be avoided altogether, and the message passing latency becomes approximately
WL geg.

Another approach to improving communication wouid be to decrease Dgyg and/or W. These
are both dependent on the type of interprocessor network used in the system. In high-connectivity

2 COST MODEL

netwoeks, such as hypercubes, the gumber of hops o1 one node to another (Dawg) is fairly sma-.ll—-
O(log P), for P processors—but pinout and wiring ccas:derations tends to keep the channel width
small (2], thus increasing W. Therefore, decreasing .7 114 by using topology msy not decrease the
W - Dgwg product and, in fact, may increase the ave sz~ latency by increasing W - Lgog-

Another way to decresse Dgagg for an applicaticn s to exploit locality. If processes (or objects)
are placed nearby the data (or other objects) which they need to reference, then the average distance
travelled by a message is small. In some cases, good static placement strategies may be developed,
based oa the network topology and the communication pattern of the application, but in general,
determining optimal placement is difficalt.

Finally, process communications throughpst may be improved by overlapping commmunication
with process execution. For example, in the current CARE machine models (4], there are two
processors on a processing site—one (the esaluator) is concerned with executing application code,
while the other (the operdtor) handles communication and process scheduling. Thus message en-
coding/decoding, netwo: - transmission, and process execution may all proceed in perallel. For
example, while the operator is encoding a message to be sect to a remote object, the evaluator may
be invoking s new object, based on the previous message.

2.5 Completion Time

Using the estimates on interprocess communication developed above, we can estimate a lower bound
on the execution time of a paralle]l program.

2.5.1 Shsared Variable

For the shared variable case, the minumum completion time is the sum of the evaluation time,
E gy, plus the communication time, 1'3,!{,,_.. Npen where N s the number of interprocess transfers
performed by a single process. (One read plus one write counts as a single transfer.)

Thus, s lower bound on completion time is

T3mp = Esv+ Tpoc* Nnet-

2.5.2 Message Passing

A minimum bound for the object-oriented case is harder to compute, since evaluation, coding,
and transmission can all occur in parallel. We consider three cases: (1) when the computation is
compute-bound, (2) when coding is the dominant overhead, and {3) when network transmissien
dominates.

In the first case, the completion time depends merely on the sum of the evaluation and
invocation® times of all the objects on a site (Emp)—comnmnication is completely overlapped
with execution. In the second case. completion time is limited by the encoding and decoding of
messages. If we assume that there are an equal number of messages sen: and received, the bound

*See section 1.8,

(£
]
(2 4]
o

3 EXPERIMENTAL RESULTS

is twice the coding time (T¢ + ¢+ Lavg) times the number of messages sent by the objects on a site
(Npet)- In the third case, the network is the limiting resource, so the bound becomes the product
of the network transit time and the number of messages sent.

Therefore, a minimum bound estimate of the completion time for the message passing model is

Emp,
T%ap 2 max Z(Tc +c- Laug) . Nnd,
(W-Dagg+ W - Lavg) - Npet

2.6 Summary

The table in figure 1 summarizes the completion time bounds for the shared variable and message
passing m- '=ls, in the general case and when Lggg is lazge. The major differences in the two models
are that t. shared variable model is much more seusitive to network distance (Dgyg), while the
message passing model is more concerned with message encoding and process switching.

These differences fade away when large blocks of data are being transferred (assuming ¢ = W),
If we assume that there is a fixed amount of information (dicated by the problem) that must
be accessed b; the processors for the computation (i.e., the product Lavg« Npet is & constant),
then the most efficient programs will increase Lgpgand decrease Ny, Thus, to a first order of
approximation, shared variable and message passing systems deliver the same performance for these
efficient programs. To the extent that this type of efficiency is not feasible, performance of the two
systems will be largely determined by the factors mentioned above.

3 Experimental Results

In this section, we report the results of a simulation experiment undertaken to explore the perfor-
mance differences between shared variable and message passing programs. After a brief description
of the application, we will present two shared variable implementations and two object-oriented
applications. The performance of these programs indicates that, for this application, the costs
expressed by the model developed above were in fact the dominating ones for the more efficient
implementations developed in both paradigms.

Shared Variables Message Passing
{ Empo
In genexd Eyw+ Nﬂct . (GWDaug + ZWLaug + 3W) max 2(Tc +c¢- I/aug) . Nﬂt!’
’ (W'Dagg -FW':LQU)'Nﬂtt
Emp,
For l&lse Lavg E4y+ ‘vnet . ZWLayg mu{ 2¢c- Laug . -"Inetv
W - Lavg* Nnet

Figure 1: Minimum bounds for completion times.

3 EXPERIMENTAL RESULTS

3.1 Application Description

The application, called LineSim, is an explicit solution of a system of linear difference equations.
The difference equations represent a discretisation of the partial differential equations which model
the voltage transmission of lossy VLSI metal lines over a substrate.”

The wires are divided into segments, where each segment represents an equipotential region
and has associated resistance and capacitance parameters. At each time step, a segment’s voltages
(to the substrate and to the adjacent wire) are computed using its own values and the values of
its neighbors calculated during the last time step. The time steps are small enough to guaran-
tee convergence, so there is no need for global synchronization. The segments were divided into
rectangular regions, and each region was assigned to a processor. All of the perfor&ance numbers
presented below are for a 64 x 64 grid of segments, calculated for ten time steps,

The various implementations of LineSim were all written using the LAMINA programming lan-
guage [5], which provides parallel extensions to Zetalisp [12] and Flavors [8] for programming in
functional, object-oriented, and shared variable paradigms. The programs were executed using
the CARE/SIMPLE simulation system [4]. For the experiments described here, the processors were
connected in a torus topology—that is, the processing sites were configured in a rectangular grid,
with each site connected to its eight neighbors (including diagonal connections), and the edges were
wrapped around in the vertical and horizontal directions.

Different machine models were used to execute the shared variable and object-oriented programs.
For the object-oriented programs, each processing site corresponds to the model discussed earlier.
It contains an evaluator, for executing application code; an operator, for handling communications
and process scheduling; a private memory, which is shared by the operator aud evaluator; and
network components, which actually transmit data across the wires. All of the overhead costs
introduced by the message passing cost model are implemented as parameters in the simulation
model and are easily varied between (or during) program executions.

In the shared variable model, sites are distinguished as either processing sites or memory sites.
The operator on a memory site acts as the memory controller—its accepts requests from the network
and sends replies over the network. Some of the overhead costs associated with the operator are
ignored, such as packet encoding/decoding, since they are not part of the shared variable cost
model. For these experiments, the torus topology was also used for the shared variable programs,
with alternate rows representing processing sites and memory sites.

The CARE/SIMPLE system also provides an extensive instrumentation package for monitoring
the execution of parallel programs. These instruments display current information about the state
of the machine and the program, such as network delays, execution times, and so forth. Most of
the numbers discussed below were obtained by the simulator’s instrumentation.

3.2 Shared Variable Implementations

Two shared variable implemetations of LineSim were developed, called sv-point and sv-block.
Their execution times for systems ranging from four processors to 256 are shown in figure 2.

"This is easentially the pazabolic PDE system represented by the “diffusion”™ equation.

2-189

3 EXPERIMENTAL RESULTS

-o~ SV-Block
-8~ SV-Poiat
128 00000 N N e Refesience t s R/p
256.0
Time (t)
po 128,
64
32

4 8 16 k¥4 o4 148 ﬂ
Number of Processors (p)

Figure 2: Shared variable LineSim completion times.

Both implementations use the thread model—one process per processor. Each process has a
local array containing the voltages for the segments in its block. Only the values for segments along
the edges of the block need to be shared.

The basic operation of the threads is as follows:

1. Get the edge values of the neighboring blocks, and store them in the local voltage array.
2. Calculate the sogment voltages for this time step.
3. Write the edge values of this block to global memory.

Both implementations use spin locks to synchronize with its neighbors. Yhen a thread is ready
to read a neighbor’s edge values, it reads a location associated with that thread until its value
corresponds with the current time step. Similarly, when the thread writes its owa ndge values, it
increments the lock locations for its neighbors.

The difference in the two implementations is strictly in how its values are read and written.
The sv-point thread reads in voltages one at a time, while sv-block uses block transfers. Since
block transfers allow fewer network accesses, they incur less overhead cost than word transfers. In
view of the cost model, terms involving Dgang are dominating in sv-point, while terms involving
Lgyg dominate in sv-bleck.

The relative performance of the twn programs becornes more disparate as the number of pro-
cessors increases, because the computation time decreases by a factor of 2 with each doubling of
processors, while the communication time only decreases 25%. This is because the computation

2-190

3 EXPERIMENTAL RESULTS

1024.0
-0~ Obj-Point
5120 -~ Obj-Block
— Reference t s kK/p
60

Time (t
:”' 1280

640

320

K [16 31 & 128 b1 ~ 312
Number of Processors (p)

Figure 3: Object-oriented LineSim completion times.

depends on the area of the region of segments, while communication depends on its perimeter. (No
performance data was taken for sv-point at 256 processors, because of excessive simulation time
required.)

One final cbservation about these programs has to do with the effectiveness of automatic caching.
In this application, the naive thing to do would be to store all the segment voltages in a global
array. Assuming the cache is big enough, all of the values for the local segments would have been
collocated with the processor after the first iteration. However, some edges are represented by rows
of the array aand some by columns. If the array were stored in a row-major fashion, for example,
a block transfer of a column would not be accomplished just by fetching the first value—instead,
a lot of interior points would be needlessly transferred to the other cache, and would have to be
transferred back when they had to be written. Unless the shared variables were recognized -s
shared and set apart as vectors, which would be fetched as blocks by a caching syst=r:;, there would
be much wasted network bandwidth.

3.3 Object-Oriented Implementations

Two implementations were developed in the object-oriented style. These are obj-point and
obj-block, and their performance numbers are shown in figure 3.

Obj~point represents the naive object-orieated solution to this problem, in which each segment
is represented as a separate object. As before, the segment waits for values from its neighbors,
calculates its new voltages, and then sends the updated values to its neighbors. : his time, however,
the computation and communication are on a per segment basis.

2-191

3 EXPERIMENTAL RESULTS

Thege are two potential problems with this approach. First, each segment uses message passing
to send new values to all of its neighbors, even when they reside on the same processor site. In fact,
at least two neighbors are guaranteed to be on the same site. Thnis needlessly consumes operator
resources. Second, the process switching cost is incurred for every segment computation, rather
than being amortized over all the computations for a block.

As it turns out, for the nominal values of the machine parameters chosen, the second problem
is the critical one—since the operator handles packets in parailel with execution, and since tke
evaluator has lots of objects to deal with, the communication system usually manages to keep up.
However, the process switching overhead represents a fair percentage of the computation time, so
speedup is degraded.

0bj-block, on the other hand, represents a block of segments as an cbject. As in the shared
varisble implementationr, only the edge values are commuricated. When all the edges are received,
the segment calculations are performed, and the updated edge values arc sent to the neighboring
blocks.

The block-criented implementation consistently out-performs the segment-oriented version dver
a wide range of system size. When the number of processors gets very lazge, however, the number
of segments per processor geis small, and obj-point becomes more efficieat. For this problem,

the crossover occurs between 256 processors (16 segments/processor) and 312 processors (8 ceg-
ments/processor).

3.4 A Closer Look

Figure 4 shows the performance of all four LineSim implementations. (Again, the shared variable
programs were not run for large numbers of processors because of excessive simulation time.)
The two best implementaticas, sv-block and obj-block, show essentially the same performance
through 128 processors.)

Since the process granularity is so large, small differences in overhead would tend to be swamped
out. Therefore, we measured the performance using an evaluator which is 100 times faster than the
earlier runs. This greatly decreases the computation time, while communication time stays fixed,
so differsnces in communication overhead should be more evident.

Figure 5 shows the completion times of the two block-oriented programs for 64 processors, with
increased procsssing speed. First, each program was run with the nominal valucs used by our
simulation : ystem, namely ¥ = 16 (corresponding to 4-bit channels) and ¢ = 16. (ThLe vaiue of ¢
is ignored in the she-ed variable rv.ss.) Fou this program, Dgog = 1, and Lgzg = 32.

Using the defavlt val.~s, the shared vrriable program did slightly worse, due to the fact that
exectition may not pro#26 iz pazailel with communication. The dominating coses in the message
passing progrom, according to the <ost modsl, is coding time.

Next, the value of W was decreased to two cycles per word. The model would suggest that
decreasing W woulc have = zcater ~ffict on the shared variable model (due to more trips through
the network) thac on the micsssge passing model. As expected, the shared variable completion time
decreased by 70%, while ‘he chiect-oriented program showed only an 11% improvement.

3 EXPERIMENTAL RESULTS

102408 -o- Obj-Point
-8~ SV-Point
-~ SV-Block
siq -0~ Obj-Block
~— Reference: t s k/p
25604
Time (t)
-s 12808
64.0
3208
4 8 i6 33 o4 148 256 ﬂZ’
Number of Processors (p)
Figure 4: LineSim completion times.
4.0
7.0 B Wik 16
I Ve al6
i Wik o0
3 We: o0

Figure 5: Completion times with 100x evaiuator speedup.

2-133

4 CONCLUSIONS

However, decreasing coding time to zero (by not coding vectors, for example) had a more
pronounced affect on the message passing program. The dominant costs moved to the network,
resulting in a performance increase of 36%. When the zero coding time is combined with large
channel width, the two programs have virtually identical performance.

4 Conclusions

The goal of this experiment was to understand some of the potential performance differences for
message passing and shared variable programs. In particular, we looked at the implications of the
communications mechanisms in both paradigms.

The analytic cost model developed in this paper appears to provide a reasonably good first
approximation to the costs of data communication in parallel programs. Many factors, however,
are not included in the model. Some of these factors, such as network contention and routing
strategy, are modelled by the simulatior. system. The close agreement between tke analytic model
and the results supplied by the simulator demonstrate that, for this application, those costs did
not dominate the performance. System factors, such as paging costs and global resource allocation
and reclamation, were not included in the models or in the simulations. The costs associated with
the system considerations were assumed not to dominate performance.

The cost model developed here is an atiempt to quantify the difference in overhead costs for the
two programming models. The shared variable model is particularly sensitive to network latencies,
while packet formatting is a greater concern in a message passing system. The experimental results
are not meant to be conclusive evidence of the superiority of one programming style cver another,
but they do offer an indication of the important machine parameters to be optimized to support
one or bota of these paradigms.

Acknowledgments

The authors would like to thank Nakul Saraiya for his extensive work on the simulation system,
and in particular the shared variable interface, and Sayuri Nishimura, whose efforts in developing
and supportiny the instrumentation system have allowed meaningful measurements to be taken.
We also acknowledge the many users and developers of SiMPLE; CARE for helping to enrich the
system and direct its growth.

References

{1] Gregory T. Byrd, Russell Nakano, and Bruce A. Delagi. 4 Point-to-point Multicast Commu-
nications Protocol Technical Report KSL-87-02, Knowledge Systems Laboratory, Stanford
University, January 1987.

REFERENCES

(2] William J. Dally. Wire-efficient VLSI multiprocessor communication networks. In Paul
Losleben, editor, Advanced Research in VLSI—Proceedings of the 1987 Stanford Conference,
pages 391-415, MIT Press, 1987.

(3] William J. Dally and Charles L. Seits. Deadlock-free message routing in multiprocessor intez-
connection networks. IEEE Transactions on Computers, C-36(5):547-553, May 1987.

(4] Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd. An Instrumented Ar-
chitectural Simulation System. Technical Report KSL-86-36, Knowledge Systems Laboratory,
Stanford University, January 1987.

(5] Bruce A. Delagi, Nakul P. Saraiya, and Gregory T. Byrd. LAMINA: CARE Applications
Interface. Technical Report KSL-86-67, Knowledge Systems Laboratory, Corputer Science
Department, Stanford University, November 1987.

(6] Robert H. Halstead. Multilisp: a language for concurrent symbolic computation. ACM Trans-
actions on Programming Languages and Systems, 1984.

[7] P. Kernami and L. Kleinrock. Virtual cut-through: a new computer communication switching
technique. Computer Networks, 3:267, 1979.

(8] David A. Moon. Object oriented programming with Flavors. In Objecs-Oriented Programming
Systems, Languages, and Applications [OOPSLA| '§6 Proceedings, pages 1-8, September 1985.

[9] David A. Moon. Symbolics architecture. Computer, 20(1):13~52, Janusry 1987.

{10] G. F. Pfister, et. al. The IBM Research Parallel Pzocessor Prototype (RP3): introduction

and architectur-. In Proceedings of the 1985 Internationgl Conference on Perallel Processing,
pages 764-771, EEE, 1985.

{11] Marc Snir. October 1986. In lecture, Stanford University.

{12] Daniel Weinrsb and David Moon. Lisp Machine Manual Symbolics, Inc., Cambridge, M4,
1981.

ro
4
—
L]
U

Knowledge Systems Laboratory June 1989
Report No. KSL-88-81 (revised)

Multicast Communication in Multiprocessor Systems

Gregory T. Byrd and Nakul P. Saraiya

Stanford University
Stanford, CA 94305

Bruce A. Delagi

Digital Equipment Corporation
Palo Alto, CA 94301

To appear in:

1339 Interpational Conference on Parallel Processing

Multicast Communication in Multiprocessor Systems *

~ Gregory T. Byrd and Nakul P. Saraiya

Knowledge Systems Laboratory

Stanford University, Stanford, '\ 91305

Abstract: Recent high-pecformance multi-
processors exploit cut-through routing for unicast
transmission, with packets routed ns their first
bytes arrive. We extend ideas considered for ef-
ficient cut-through routing in multiprocessor sys-
tems to include multicast, in order to benefit the
many parallel programs in which producers provide
cach value to multiple consumers. We describe sev-
oral alternative cut-through multicast protocols, in-
cluding a restrictive (yet adaptive) routing scherme
for deadlock avoidance. Simulations using syn-
thetic and application-driven loads show it has sig-
nificantly better performance than ecither multi-
cast emulation or deadlock detection and resolu-
tion. The scheme provides cut-through multicast
without requiring dedicated storage in the commu-
- nication facilities for a full packet.

1 Introduction

The communication patterns naturally found
parallel programs include those in which a producer
provides values to more than one consumer [1].
These patterns can be directly supported by com-
munication facility routing protocols or indirectly
supported by arranging that either the operating

*This work was supported by Digital Equipment Corpo-
ration, by DARPA Contract F30602.85.C-0012, by NASA
Ames Contract NCC 2.220-81, and by Boeing Contract
W266875. G. Byrd was supported by a National Science
Foundation Graduate Fellowship. Any opinions, findings,
conclusions, or recommendations expressed in this publica-
tinn ara those of the author and do not necessarily reflect
the views of the National Sclence Foundation,

Bruce A. Delagi
Digital Equipment Corporation
Palo Alto, CA 94301

system or the application build a tree of communi-
cating processes whose leaves are the “real” targets
nf communication. [ntermediate nodes of this tree
store packets and forward tham to the next level of
the teee. Such store and forward techniques may
take limited advantage of available network facili-
ties in a system providing cut-through routing [6}.
Additionally, interrupt handling (and possibly pro-
cess switching) Iatencies are incurred at each for-
warding step. 'liiese can be significantly larger than
the transmissicii time of the packet itself, These
performance considerations motivated us to study
means to provile direct support for multicast com-
inunication,

1.1 Unicast Protocol

I'he unicast communication protocol underlying
the multicast facilities discussed here has been de.
scribed in (1]. It includes provision for adaptive
routing and is deadlock-free so long as the com.
puling nodes (see figure 1) of the system have suf.
ficient available storage to hold the blocked pack-
ets. The communication facilities themselves pro-

- vide only enough buffering at each port to hold

A packet target address. Flow control is done in
nmts of transmission activity equal to one of these
buffers. Independent routing decisions based on lo-
cal path availability information are inade by each
rouler encountered by a packet as its front edge
makes progress from its source to its target.

For normal operation, only small amounts of ded-
wated resourees ate used in the transmission and

2-197

>~

/-
blocked ™ 10 e
blocked **

\ router

port

®: root of blocked subtree

Figuee 1 Multicast Deadlock

reception of information, namely the small amount
of buffering provided at each port. In the excep-
tional condition that no suitable output port is
available for an incoming packet, additional stor-
age is made available by contending for it from a
buffer pool inanaged by the local computing node.!
The packet is then stored for forwarding to its tar-
get at a later time. The use of small dedicated
buffers for normal operation together with larger
buffers allocated from a common pool of storage to
handle exceptional conditions permits high perfor-
mance with simple, low cost, implementations.

1.2 Multicast Deadlock

If direct support of multiple consumer communica-
tion patterns in concurrent programs is to be pro-

" vided, the possibility of deadlock must be consid-
* rred. As shown in figure 1, when two multicasts

hiave each acquired some paths also needed by the
other, cach will block progress by the other: a dead-
lock is the result,

One way to handle deadlock is to ensure that no

path may be blocked; that is to associate with cach
input port enough dedicated storage to buffer the

"Through the use of virtual channels {2] we could elimi-

, nate the requirement for such buffers at the cost of consum.

ing netwnrk resources holding delayed packets in the net
and with stgnificant impact on the passibilities for adaptive
touting,

largest possible message. Motivated as discussed
above, however, our design goal was for the multi-
cast communication facility to have little dedicated
storage relative to anticipated packet sizes.?

We will consi-.r three alternative approaches for
dealing with . .llock: (1) emulating multicast by
multiple unica.t~—eliminating the problem by ef-
fectively elimin-ring the facility, (2) detecting and
resolving deadl~cks, or (3) avoiding deadlock. We
call the first apyroach multi-unicast (MU). For the
second approach, the deadlock detection and res-
olution scheme we consider allows all but the po-
tentially deadlocked subtree to proceed. The trans-
mission of just this subtree is aborted and later re-
sumed. (Two such subtrees are shown in figure 1.)
We call this scheme resumable multicast (RM). Fi-
nally, the third approach~—resiricted branch mul.
ticast (RBM)—provides deadlock avoidance by re-
stricting routing alternatives. . ‘

1.3 What Will Be Shown?

In the remainder of this paper we will describe the
details of each of the three schemes and present
their simulated performance, Qur studies, using

4 As indicated, the dedicated storage in the transmission

. path need only be large rnough to hold a target address,

Beeaking packets into sub-packets introduces significant par-
tition and re-assembly overhead and entails substantial pro-
portionate inctease in such dedicated storage,

2-198

st e A e RN NS e

the CARE simulation system [3), include both test
cases contrived to exercise multicast facilities and
also an application characterized by a mix of mul-
ticast and unicast communication, Based on our
expectations of the relative times required to drive
signals within and between sites in multiproces-
sor systems, the computing nodes in these simu-
lations execute instructions four times faster than
the network ports accept, transmit, and deliver in-
put. Based on expected die pin count limitations,
four pairs of ‘16-bit network ports are associated
with each site. The computing node at each site
is assumed to include a resource for message han-
dling (including forwarding) that is independent of
the resource doing computation.

We will discuss the performance of the communi-
cations system in each of the three schemes in terms
of the measured network latency for the packets it
handles. Network latency is defined in this paper
" as the difference between the time a packet is made
available for transmission and the time it is com-
pletely received at its target computing node. If,
due to unavailability of a suitable output port, a
packet is temporarily stored at a computing node
which is not its target, the time taken to forward
the packet (as well as the time spent waiting to be
forwarded) is included in the network latency for
that packet. By this measure, the restricted branch
approach to multicast transmission (RBM) will be
shown in many cases to have significantly better
performance than the other two schemes consid-
ered.

2 Multicast Protocols

In this section, we describe the three multicast pro-
tocols and give expressions for the average network
latency in the absence of contention. Then, in order
to assess the performance of each approach in the
presence of network load, we compare the latencies
experienced while running a test program designed
to exercise the multicast facilities.

The latency of a unicast packet in a cut-through
network, in the absence of contention, is T =
[w] D+ (] where: ¢ is the number of bits in
a largel, i.e., a network address; D is the distance

(the number of channels) traversed by the packet: L
is the length of the packet (data only), in bits; and
W is the width of the network channels, in bits.

~ The above equation gives latency in terms of cy-
cles, where a cycle is the time to transfer W bits of
ata from an input port of one site to an input port
on the next site. In describing the latencies expe-
rienced by the multicast schemes, we will use the
symbols D and L to denote the average distance
and length, respectively.

¥

2.1 Multi-Unicast

The simplest form of support for multicast, the
multi-unicast (MU) protocol, emulates it by trans-
mitting the entire packet sequentially to each tar-
get.

In an MU transmission with n targets, the av-
etage packet must wait for the (n —~ 1)/2 packets
ahead of it to be delivered to the network., Adding
this to the network delay experienced by the aver-
age packet yields :

L n-1{[¢ n-1[1L
Ty = [W] r +[W]+ 2 [W% 2 [W] |
For latge n or L, the cost of placing multiple copies

of the packet onto the network is likely to dominate
the average latency.

2.2 Resumable Multicast

Multi-unicast creates n independent copies of a
packet to be sent to n destinations. If the trans-
mission paths between the source and several des-

tinations have some set of channels in common,

MU uses those channels inefficiently by transmit-
ting the same data multiple times. A more efficient

approach might be to transmit along a common

path as much as possible, then “split” the packet
by transmitting the data down several paths simul-
taneously.

This is the approach taken by the resumable mul-
ticast (RM) scheme. Because of the limited buffer-
ing at network ports, data can only be transmitted
if all paths are able to receive it, If one path is
hlocked, it must become unblocked before any of

2-199

its siblings may proceed. As described earlier, this
can lead to deadlock (see figure 1)—neither multi-
cast can proceed, since each has acquired resources
needed by the other. In RM, each site at which a
split has occurred can detect a potential deadlock
situation (e.g., if the number of consecutive blocked
cycles has exceeded some threshold) and request
that all the downstream transmissions from that
point be aborted.

o recover from the abort, a local copy of the
packet is always kept and may be retransmitted
at a later time. Since the network ports them-
selves do not have sufficient storage to temporar-
ily buffer the packet, space must be allocated from
the buffer pool of the site’s computing node. If
space is not available, or if access to the comput-
ing node is blocked, the packet is not split but is
merely “passed through” toward the first target in
the packet’s target list.

In the absence of contention, the average RM la-
tency is very close to the unicast latency. However,
an RM packet contains n—1 additional targets, rel-
ative to a unicast packet. Thus, the average latency
equation is

t]1- [L t
e 610 14]
The targets are now transmitted in series with the
data, rather than sending a copy of the data with
each target. The number of targets, then, is an ad-

dilive component in the latency, rather than mults-
plicative, as we found in the MU case.

2.3 Restricted Branch Multicast

Resumable multicasts can be very sensitive to net-
work load, for three reasons. First, they split
aggressively, thus incteasing the chances that one
branch will be blocked due to contention with some
other packet in the network. Second, each split con-
sumes the port connecting to the computing node
at a site, regardless of whether there are any local
targets, this precludes any other useful packet (mul-
ticast or unicast) from being accepted at that site.
Third, all branches of a blocked subtrze are aborted
and retransmitted, thus wasting the resources they
have seized as well as excluding other messages

frem using them. Aborts thus add to the network
congestion. which can cause mote aborts—positive
feedback which can degrade the performance of the
whole network.

This lead us to consider a third multicast pro-
tocol, the restricted branch multicast (RBM). The
main characteristics of this protocol are (1) a re-
duction in the fanout of a split packet, and (2) a
scheme for deadlock avetdance, rather than dead-
lock detection and resolution.

In RBM, a packet may split into at most two
paths at any site. In our simulated implementation,
one of these paths must be local—that is, it includes
the port connected to the computing node at that
site. The single non-local path is determined by the
first non-local target in the packet, and allnon-local
targets are routed along that path.

This restriction in ftself does not prevent us from
getting into deadlock—in figure 1, each split satis-
fies the conditions described above, vet deadlock
occurs. To avoid deadlock, we provide an addi-
tional port, called the split port, to the computing
node at each site, to be used exclusively for the local
path of a split packet. If this port is not available,
the packet may not be split. It may be buffered
completely at the local site (using the normal un:-
cast port to access the computing node), in which
case the local targets will be stripped off and the
packet retransmitted later, or it may pass through,
without servicing any local targets.

Since it cannot split, a packet which represents
the leaf of a multicast is identical to a unicast
packet and therefore must utilize the unicast port
(not the split port) to connect to the computing
node. If busy, the unicast port will eventually be-
come free, since no multicast packet can use it, and
all packets are of finite size. Therefore, no multi-
cast will block indefinitely, and deadlock is avoided.
(Two local ports are sufficient. because we only al-
Jow two-way splits. Higher fanout would require
additional ports.)

To calculate the average latency for RBM, we
first assume that the distance between any pair of
targets is D. Second, we assume that the chances of
encountering another target on the path is small—
1.e, a packet is only split when it reaches the first

2-200

Suu 1 T

4 - RM
-+ MU
400 -+ REM

3001

200+

100

Fanout = 8
Dat: = 16 words

Avg. Latency (cycles)

O T—r—r=—Tr—Tr—TTr-r—r - v

o 8

. LI L §

16 24 32 40 48 56 64
Congestors

Figure 2: congest: Variable congestors.

target on its current target list. The head of the
average RBM packet, then, will travel :_‘;(n +1)D
hops to arrive at its target site. As in the RM case,
the packet length must take into account the ad-
ditional targets. For the average packet, half the
targets will have been split off when ics destina-
tion is reached, giving a packet length of L + int.
Thus, the latency of the average packet in an RBM
multicast is given by

n+1ft] - L] n-1]t
TRBM = 3 [W1D+{W +) [W]

The only diffetence between this and the multi-
unicast latency (Tyy) is an O(ntD) term in place
of an O(nL) term. Thus, if L > tD, RBM performs
better than MU for a single multicast to randomly
distributed targets. In the best case, all targets lie
on the puth between the source and the farthest
target, in which case the total number of channels
trave.sed equals the distance to the farthest tar-
get, and the average latency is the same as in the
resumable multicast case.

Avg. Latency (cycles)

3000 1|~ MU. fanout=63
- RBM. fanout=63
- MU, fanout=8
- RBM, fanout=8
2000 4

1000 1
Congestors = 16

il

O‘ﬁ(r;fﬁ-|-|.
o 8

L LA

16 24 32 40 48 55 64
Packet Data (words)

Figure 3: congest: Variable packet size.
3 Benchmark Performance

According to ti. latency equations developed
above, one woul ~xpect resumable multicast to be
the clear winner [f we make the reasonable as-
sumptions that L >t and D > 1, it will never have
a higher latency than the other schemes. Those
equations, however, assumed no contention in the
network. To study how the three multicast schemes
performed under load, we ran a test program called
congest,

The congest program creates a number of pro-
cesses, called congestors, each of which simultane-
ously multicasts a packet to a fixed number of other
sites. While holding the network size and topology
constant, there are three ways of increasing net-
work load using congest: increasing the number
of congestors, increasing the multicast fanout, and
increasing the packet size.

We simulated the executing of congest on an
8 x 8 torus. The congestors were placed randomly,
one per site; tne same random placement was used
for all experiments. Finally, the multicast targets
were picked randomly, and the order of the target
list was also random. Figure 2 shows the average

latency for each scheme as the number of congestors
was increased from one to 64, with a fanout of eight.
For a fanout of 63 (i.e., broadcast), the relative per-
formance of the three protocols was almost identical
to the results shown. Figure 3 shows the effect of
varying the packet size (data only) from one to 64
words, with sixteen congestors and fanouts of eight
and 63.

Resumable mullscast predictably shows the low-
est latencies for a single multicast, but its perfor-
mance degrades dramatically as the number of con-
gestors is increased. This is not surprising, espe-
cially in the high fanout case, since simultaneous
multicasts are very lLikely to interfere with cne an-
other, resulting in a high numbet of aborted pack-
ets.

The average latency for mulli-unicast 1s almost
constant for one, two, and four congestors—since
there are few packets in the network at one time,
there is little degradation due to network con-
tention. The dominant cost in these cases is the
time to place the multiple packets on the network.
At sixteen congestors and above, the effects of net-
work load become significant. Also, as predicted by
the latency equations above, the average latency for
MU is a strong function of packet size, especially for
large fanout.

Restricted branch multicast shows the lowest av-
erage latency in almost every multi-congestor con-
figuration. It is competitive with RM for the single-
multicast case, and clearly exhibits better perfor-
mance under load. With respect to MU, the ef-
fects of network contention are more pronounced
for RBM under light loads. Each time an RBM
packet must be temporarily <tored and forwarded,
the retransmission delay may effect more than one
target (compared to only one target in MU). Thus,
for congest, retransmission has a greater effect on
the average latency. However, RBM still wins, ex-
cept for very small packets, since it does not have
the overhead cost of handling multiple packets at
the source.

With small packets under high loads, MU shows
lower average latencies than RBM. This 1s partly
due to the impact of retransmission costs, discussed
above. Additionally, the O(nL) overhead of multi-
ple packets is not as great when L 1s small. With

smaller fanout (and thus lower load), the perfor-
mance of MU and RBM are almost identical for
small packets.

A final distinction between MU and RBM 1s the
rate at which the source can deliver messages to
the network. In the MU scheme, the source must
place n packets sequantially onto the network, so
that no other packet may be sent for O(n(L +t))
cycles. W